# Machine learning: *introductory crash course*

Andrei Zinovyev



Computational Systems Biology of Cancer group





PaRis Artificial Intelligence Research InstitutE

PR[AI]RIE

## Objectives of the course

- Provide basic vocabulary of machine learning
- Coarse-grained understanding of machine learning concepts
- Some hints on application of machine learning in genomic data analysis

PS: These slides will be available at : <u>https://auranic.github.io/teaching/2021-ml\_intro</u>

Plan of the course

Part I. Introductory notions

Part II. Supervised approach

Part III. Unsupervised approach



What is the difference between statistics, machine learning, artificial intelligence and deep learning?

# Artificial intelligence at Dartmouth workshop in 1956 : 2 months, 10 great minds



"An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves.."



#### John McCarthy

#### Thinking machines:

*i)* The Knowledge base which has rules and facts.

*ii)* And the inference engine which applies rules to the already known facts from the knowledge base to infer new facts.

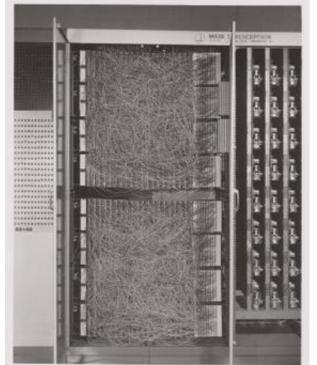
#### Minsky's pragmatic problems

- Search
- Pattern-Recognition
- Learning
- Planning
- Induction

## Frank Rosenblatt, inventor of perceptron

- Cornell University, PhD in 1956
- Psychologist, head of cognitive systems section
- Constructor of Mark I Perceptron (simplified perceptron)
- Theory of multi-layered perceptron (aka deep neural network)







#### **A.I. based on data** Very advanced form of

statistics

#### A.I. automating reasoning and knowledge retrieval Very advanced form of a "handbook"

#### Artificial Intelligence

#### Machine Learning

#### **Deep Learning**

The subset of machine learning composed of algorithms that permit software to train itself to perform tasks, like speech and image recognition, by exposing multilayered neural networks to vast amounts of data. A subset of AI that includes abstruse statistical techniques that enable machines to improve at tasks with experience. The category includes deep learning Any technique that enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and machine learning (including deep learning)

Knowledge formalization

#### **Data mining**

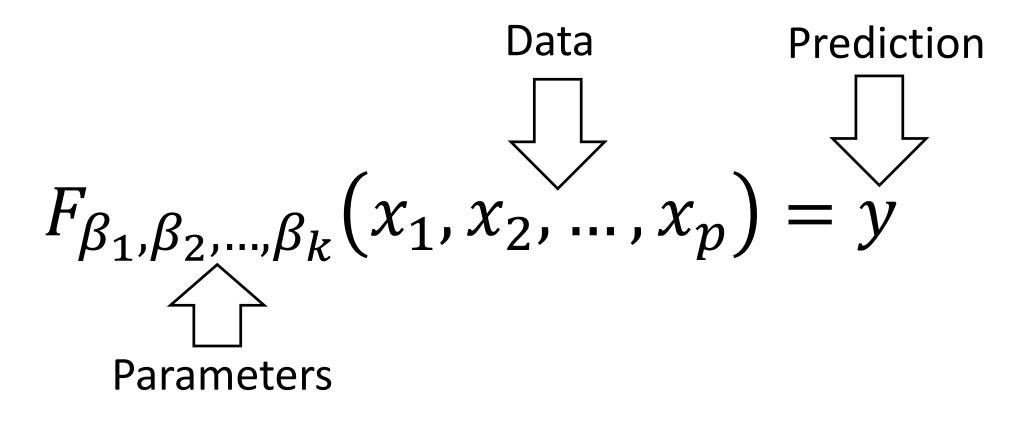
## Notion of machine learning model

*Wikipedia*: Machine learning algorithms build **a model** based on training data, in order **to make predictions or decisions** *without being explicitly programmed to do so*.

If the model uses, as a part of training and construction, the notion of **probability distribution** then we talk about statistical inference and **statistical model** 

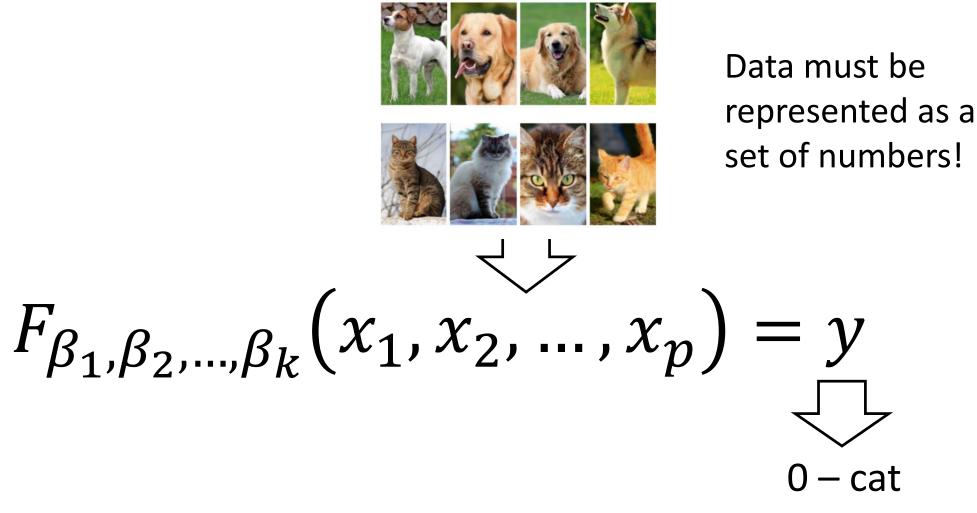
In other cases, model is just a mathematical function characterized by a number of **model parameters** which converts a sample of data into a set of numbers or labels

Machine learning model is a mathematically defined function with (many) parameters

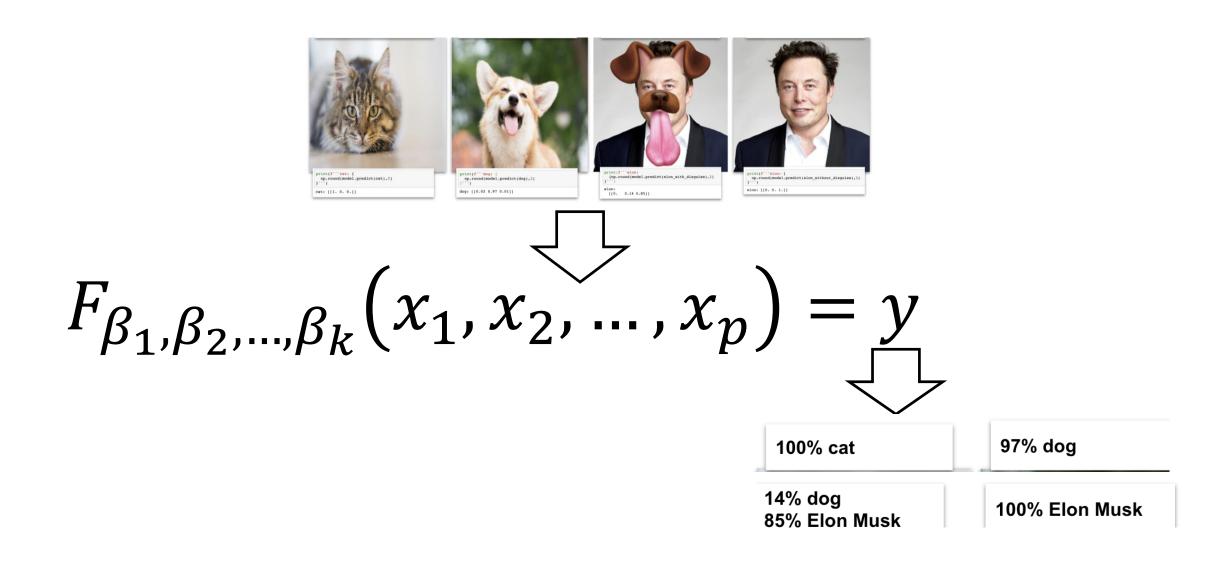


### Fit the model = define its parameters

# Machine learning model is a mathematically defined function with (many) parameters



# Machine learning model is a mathematically defined function with (many) parameters



## Parameters and *hyperparameters*

- Parameters are derived via training
- Hyperparameter controls the learning process, they are not derived from training the model
- Example of hyperparameter : *the topology and size of a neural network*
- Example of hyperparameter : *the way the data are preprocessed*
- *Type of model* can be also considered a hyperparameter of learning

## What is *data* in machine learning?

## What is *data* in machine learning?

- Any set of observations (samples, examples) that can be described by a common set of features
- Features must be represented by numbers
- Most of the existing data are NOT numbers
- Even if the data look like numbers, it almost always require some preparation (cleaning and preprocessing)!

#### Data in Machine Learning = Table with numbers

#### Variables (features)

| 1 | А           | В          | С          | D          | E          | F          | G          | Н          | 1          | J          | K          | L          | М          | N          | 0          | Р         |
|---|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|
|   | ID          | GSM26804   | GSM26867   | GSM26868   | GSM26869   | GSM26870   | GSM26871   | GSM26872   | GSM26873   | GSM26874   | GSM26875   | GSM26876   | GSM26877   | GSM26878   | GSM26879   | GSM26880  |
| l | 1007_s_at   | 10.1865219 | 8.55465039 | 10.0171922 | 9.62855164 | 8.98179716 | 9.32096544 | 9.47013224 | 8.95127564 | 9.96641442 | 10.4723245 | 9.24634157 | 9.02814158 | 9.80726386 | 10.0884552 | 9.4278991 |
|   | 1053_at     | 7.14041117 | 7.9214253  | 7.19382145 | 6.33955085 | 7.0908807  | 7.14601906 | 7.11899363 | 6.1405604  | 7.07155598 | 7.54040306 | 7.13747501 | 6.68022907 | 7.3384041  | 7.06154974 | 8.108721  |
| 1 | 17_at       | 3.82411386 | 4.04754597 | 3.79189557 | 3.84224583 | 3.92385016 | 4.86869941 | 3.88504756 | 3.76331375 | 4.32971859 | 3.89711353 | 3.81477514 | 3.86303976 | 3.75730583 | 3.90036158 | 3.72735   |
| 1 | .21_at      | 3.61027455 | 3.54508217 | 4.54816259 | 3.74454054 | 3.61249215 | 3.92550296 | 3.6694669  | 3.52652939 | 3.64293119 | 4.04713877 | 3.46597877 | 3.49245376 | 3.67221448 | 3.66359582 | 3.612271  |
|   | 1255_g_at   | 1.88973308 | 1.83203391 | 2.04186476 | 1.89308074 | 1.91040953 | 1.91591151 | 1.95901919 | 1.83514593 | 1.91134886 | 1.98236692 | 1.89657927 | 1.91074736 | 1.9468854  | 2.00801479 | 1.870338  |
|   | 1294_at     | 2.76750098 | 2.78550183 | 2.86012235 | 2.84959436 | 3.26397282 | 2.88519676 | 3.16642211 | 3.26979855 | 2.96513014 | 3.01209778 | 3.7258176  | 3.24593083 | 2.89258523 | 4.22469552 | 2.651385  |
|   | 1316_at     | 3.56186724 | 6.00938132 | 5.47627387 | 3.46082345 | 3.5589646  | 3.55022131 | 3.6495575  | 3.52929593 | 3.81489528 | 3.80151472 | 3.65353504 | 3.64297291 | 5.49390683 | 3.65494323 | 3.17761   |
| 1 | L320_at     | 2.73909575 | 2.68207678 | 2.97410312 | 2.73471052 | 2.78817658 | 2.79770738 | 2.90340693 | 2.67748734 | 2.78673884 | 2.94813241 | 2.74922119 | 2.78593559 | 2.88668564 | 2.98050986 | 2.623606  |
|   | 1405_i_at   | 6.56570279 | 6.28698926 | 4.91331257 | 7.08328018 | 8.85548288 | 8.73393312 | 7.00368174 | 9.20074992 | 7.56290044 | 7.08242829 | 8.62383444 | 6.68093219 | 6.64318345 | 9.43959551 | 7.59805   |
|   | 1431_at     | 2.8344133  | 2.78755371 | 3.18847354 | 2.88404293 | 2.93762587 | 2.89823055 | 3.05244607 | 2.78417436 | 2.90076657 | 3.09872342 | 2.90011368 | 2.90453628 | 3.00948297 | 3.1228764  | 2.74311   |
|   | 1438_at     | 2.08209982 | 2.05046004 | 2.1380021  | 2.08249533 | 2.09277912 | 2.1099077  | 2.11854206 | 2.04375093 | 2.09150681 | 2.13821066 | 2.0847717  | 2.09495798 | 2.13115924 | 2.1353399  | 2.04584   |
|   | 1487_at     | 5.54120155 | 5.35862078 | 5.46869731 | 5.52103094 | 5.51418122 | 5.55106929 | 5.4161482  | 5.44489428 | 5.24818751 | 5.56301699 | 5.42549692 | 5.54960823 | 5.82915837 | 5.56467106 | 5.50830   |
|   | 1494_f_at   | 2.54757724 | 2.37930712 | 2.62709071 | 2.38194831 | 2.44028963 | 2.4526832  | 2.4825064  | 2.4207785  | 2.60409103 | 2.49857683 | 2.43723118 | 5.2354071  | 2.48110506 | 2.49964028 | 2.41921   |
|   | 1598_g_at   | 2.7304057  | 2.67040188 | 2.59698585 | 7.93551881 | 5.34425285 | 3.13179926 | 6.57015445 | 4.4323031  | 5.18399788 | 3.88981767 | 3.85670525 | 4.88119006 | 2.70978966 | 3.85692387 | 2.75953   |
|   | 160020_at   | 2.1655937  | 2.14026455 | 2.21194547 | 2.16062823 | 2.17141169 | 2.17996571 | 2.2008294  | 2.1242019  | 2.18214481 | 2.2125988  | 2.1687426  | 2.43832316 | 2.19630922 | 2.21189546 | 2.12666   |
|   | 1729_at     | 7.01826581 | 6.8620684  | 6.2748978  | 5.90084028 | 6.41997144 | 6.40378323 | 6.47535055 | 6.56605198 | 6.69687512 | 6.47743846 | 6.83935011 | 6.77296396 | 7.34317394 | 6.89120616 | 6.7314    |
| ; | 1773_at     | 1.65915684 | 1.63701805 | 1.72741313 | 1.65439452 | 1.67083716 | 1.67811596 | 1.70139307 | 1.64332524 | 1.67628101 | 1.71880406 | 1.6714433  | 1.67212824 | 1.70672522 | 1.71772136 | 1.6204    |
|   | 177_at      | 2.94878496 | 2.86836877 | 3.14969855 | 2.97643251 | 2.98608845 | 3.03205184 | 3.08209486 | 2.89669887 | 2.97919094 | 3.13159394 | 2.92393653 | 3.02575255 | 3.12900366 | 3.1146516  | 2.95474   |
|   | 179_at      | 0.57716722 | 0.55275837 | 0.63200969 | 0.57298874 | 0.58419168 | 0.59124817 | 0.61105933 | 0.56274132 | 0.59422142 | 0.62795537 | 0.58159784 | 0.58517916 | 0.61999536 | 0.61528153 | 0.5432    |
|   | 1861_at     | 1.18690202 | 1.15813312 | 1.22122377 | 1.17375236 | 1.18429212 | 1.20030196 | 1.27557097 | 1.15859558 | 1.19207924 | 1.65247824 | 1.18805205 | 1.19209823 | 1.22668581 | 1.2303746  | 1.15380   |
| 2 | 200000_s_at | 9.20648723 | 9.16145477 | 8.7773438  | 8.87165851 | 8.61164901 | 9.11532903 | 7.49798068 | 8.6501605  | 8.65648402 | 8.50846148 | 8.23676007 | 9.0088335  | 8.48443715 | 8.47810052 | 8.67504   |
| : | 200001_at   | 10.2111295 | 9.64241927 | 8.49184651 | 9.32048593 | 9.55080931 | 9.54725821 | 9.48348667 | 9.20829652 | 9.94634018 | 9.95504495 | 9.78220873 | 9.51833134 | 10.0545938 | 9.27885752 | 9.13860   |
| Ļ | 200002_at   | 11.7416844 | 12.5435781 | 12.5946606 | 11.2449107 | 11.7915808 | 11.4243596 | 12.3739699 | 11.5708209 | 10.6073152 | 12.4039151 | 11.1801336 | 12.3501075 | 11.8337089 | 12.0351735 | 12.0298   |
| 6 | 200003_s_at | 11.9080732 | 12.7295141 | 11.8924837 | 11.8114427 | 11.9696242 | 12.0234239 | 12.1696299 | 12.4044847 | 11.5106517 | 12.6009712 | 11.214454  | 13.10743   | 12.5458678 | 12.3421479 | 11.8707   |
| ; | 200004_at   | 12.8626281 | 13.0318466 | 12.3226364 | 12.9112874 | 12.5629091 | 13.1340588 | 13.0250779 | 12.8029198 | 12.9787753 | 13.1286809 | 12.748781  | 13.0629905 | 13.0935061 | 13.030989  | 13.4212   |
| ' | 200005_at   | 11.2365327 | 11.0171526 | 11.7152353 | 10.4233686 | 11.1230332 | 11.294694  | 10.7547452 | 10.900953  | 10.4631057 | 10.5860537 | 10.8269418 | 10.8355385 | 11.3292254 | 10.9910538 | 11.8222   |
| ; | 200006_at   | 13.4345486 | 13.07559   | 13.5937822 | 13.4856798 | 13.0994422 | 13.4686359 | 13.5762938 | 13.3161896 | 13.4856942 | 13.4639962 | 13.5249391 | 13.2203125 | 13.0822576 | 13.2736093 | 13.2      |
|   | 200007 at   | 13.4323845 | 13.8222834 | 13.8399309 | 13.5619045 | 12.9873835 | 13.1472475 | 13.6921953 | 13.5192546 | 13.8453793 | 14.0467732 | 13.594668  | 13.7081125 | 13.3744476 | 13.8363235 | 13.4141   |

#### + object annotation + variable annotation

## GenOMIC data: result of sequencing



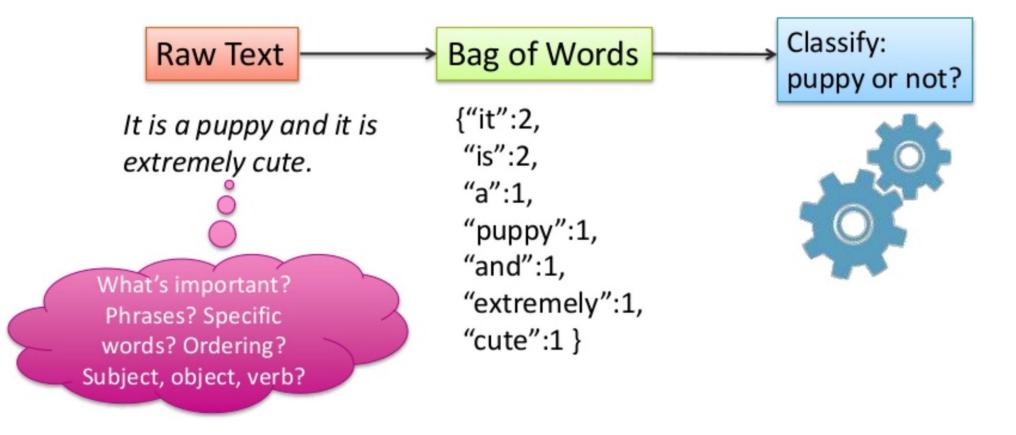
Bag of sequences

Various features types:

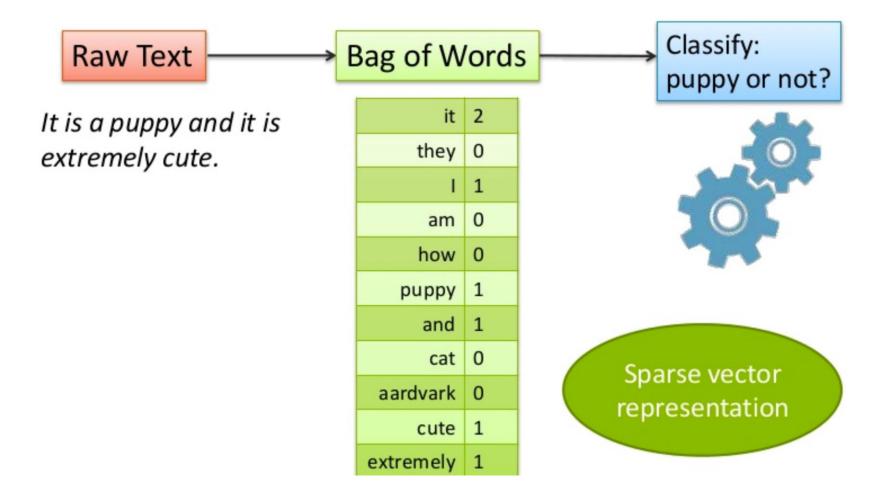
Counts, Peaks, Profiles, kmer frequencies, Hits, Connections between sites

Each technology and problem leads to specific set of features Other data types: raw data -> numerical table

# Representing natural text



## Representing natural text (e.g., clinical record)



## **Representing images**

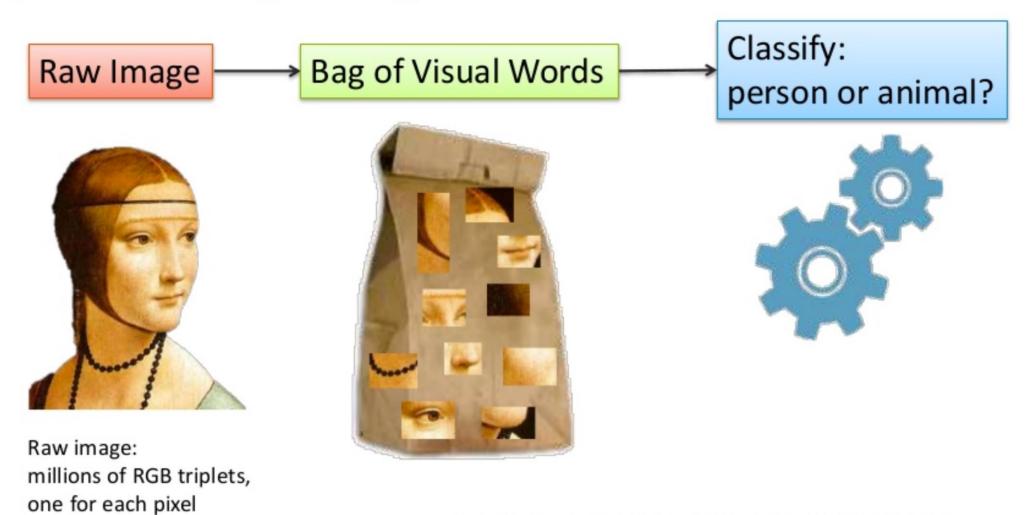
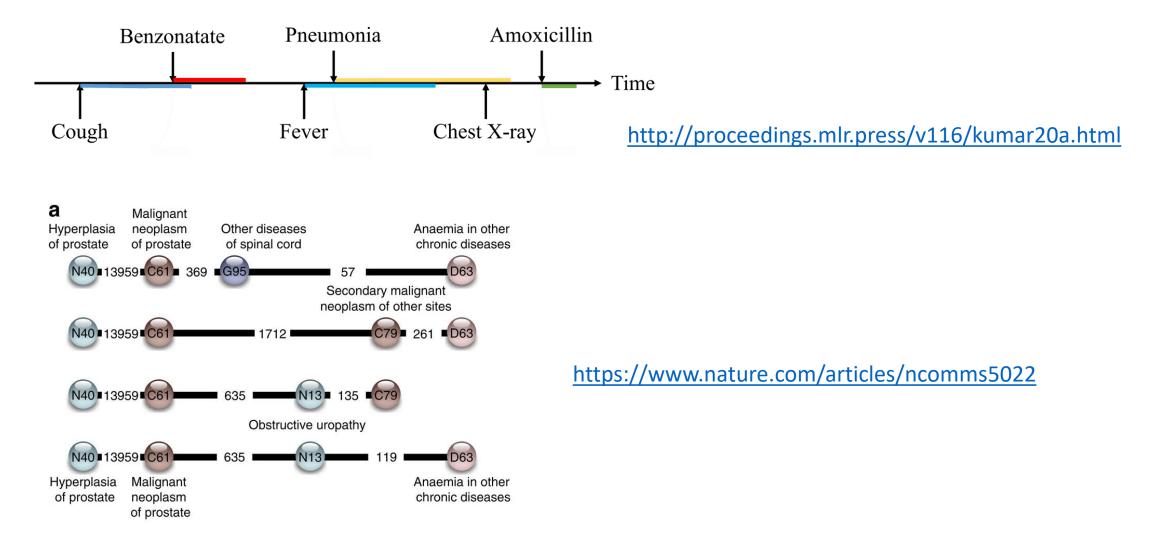


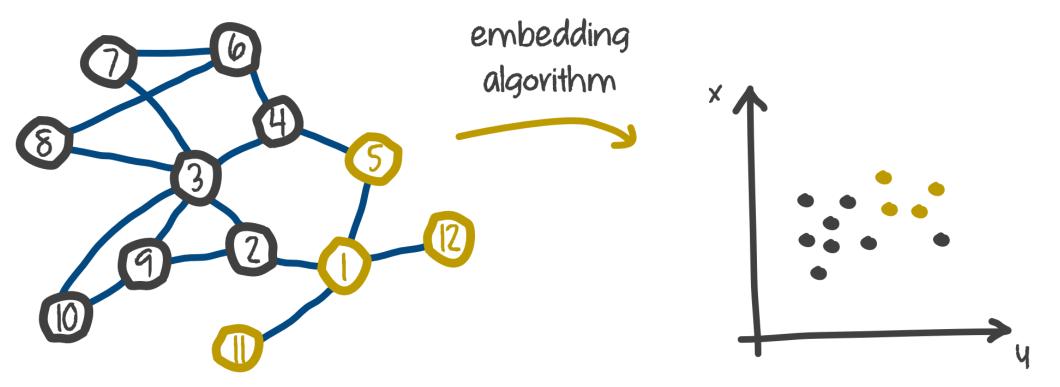
Image source: "Recognizing and learning object categories," Li Fei-Fei, Rob Fergus, Anthony Torralba, ICCV 2005—2009.

# Encoding disease trajectories from electronic health records



## Graph embedding

from a graph representation ...



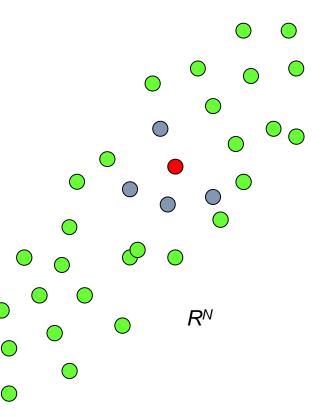
to real vector representation

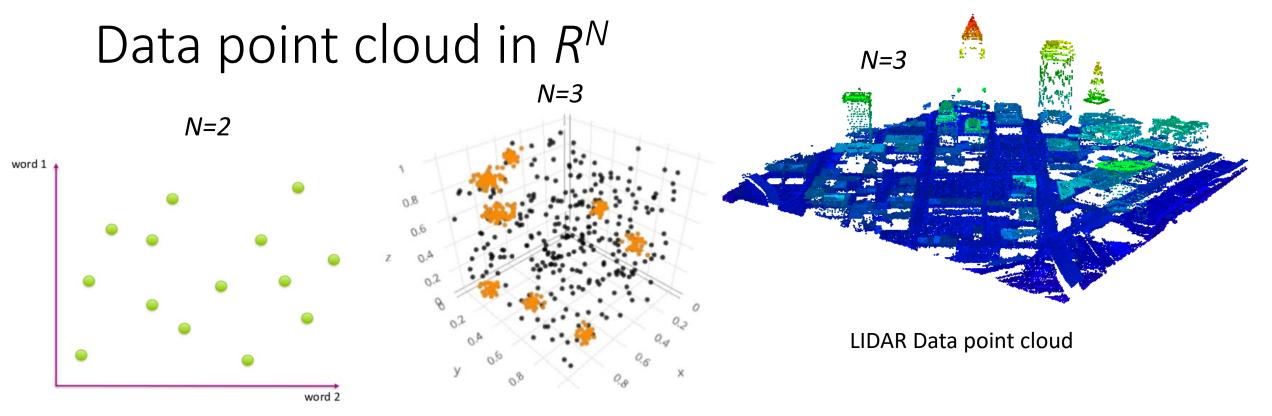
Example: recommendation systems

# Geometrical point of view: Analysis of numerical tables = study of a cloud of points in multidimensional space

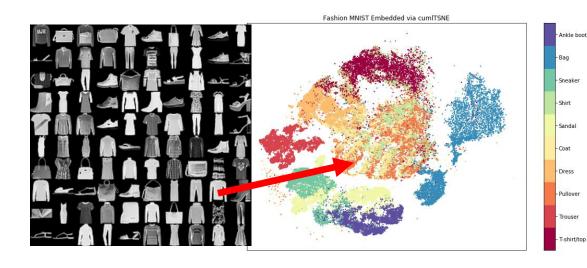
#### Variables (features)

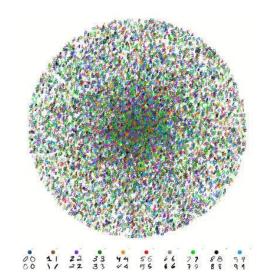
|          |    | А                | В          | С          | D          | E          | F          | G          | Н          | 1          | J          | K          | L          | М          | N          | 0          | Р          |
|----------|----|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| S        | 1  | ID               | GSM26804   | GSM26867   | GSM26868   | GSM26869   | GSM26870   | GSM26871   | GSM26872   | GSM26873   | GSM26874   | GSM26875   | GSM26876   | GSM26877   | GSM26878   | GSM26879   | GSM26880   |
| Ę        | 2  | 1007_s_at        | 10.1865219 | 8.55465039 | 10.0171922 | 9.62855164 | 8.98179716 | 9.32096544 | 9.47013224 | 8.95127564 | 9.96641442 | 10.4723245 | 9.24634157 | 9.02814158 | 9.80726386 | 10.0884552 | 9.42789917 |
| e        | 3  | 1053_at          | 7.14041117 | 7.9214253  | 7.19382145 | 6.33955085 | 7.0908807  | 7.14601906 | 7.11899363 | 6.1405604  | 7.07155598 | 7.54040306 | 7.13747501 | 6.68022907 | 7.3384041  | 7.06154974 | 8.10872116 |
| Ĕ        | 4  | 117_at           | 3.82411386 | 4.04754597 | 3.79189557 | 3.84224583 | 3.92385016 | 4.86869941 | 3.88504756 | 3.76331375 | 4.32971859 | 3.89711353 | 3.81477514 | 3.86303976 | 3.75730583 | 3.90036158 | 3.7273577  |
| 5        | 5  | 121_at           | 3.61027455 | 3.54508217 | 4.54816259 | 3.74454054 | 3.61249215 | 3.92550296 | 3.6694669  | 3.52652939 | 3.64293119 | 4.04713877 | 3.46597877 | 3.49245376 | 3.67221448 | 3.66359582 | 3.61227108 |
| Ē        | 6  | 1255 <u>g</u> at | 1.88973308 | 1.83203391 | 2.04186476 | 1.89308074 | 1.91040953 | 1.91591151 | 1.95901919 | 1.83514593 | 1.91134886 | 1.98236692 | 1.89657927 | 1.91074736 | 1.9468854  | 2.00801479 | 1.87033852 |
| Ľ        | 7  | 1294_at          | 2.76750098 | 2.78550183 | 2.86012235 | 2.84959436 | 3.26397282 | 2.88519676 | 3.16642211 | 3.26979855 | 2.96513014 | 3.01209778 | 3.7258176  | 3.24593083 | 2.89258523 | 4.22469552 | 2.65138576 |
|          | 8  | 1316_at          | 3.56186724 | 6.00938132 | 5.47627387 | 3.46082345 | 3.5589646  | 3.55022131 | 3.6495575  | 3.52929593 | 3.81489528 | 3.80151472 | 3.65353504 | 3.64297291 | 5.49390683 | 3.65494323 | 3.1776103  |
| S        | 9  | 1320_at          | 2.73909575 | 2.68207678 | 2.97410312 | 2.73471052 | 2.78817658 | 2.79770738 | 2.90340693 | 2.67748734 | 2.78673884 | 2.94813241 | 2.74922119 | 2.78593559 | 2.88668564 | 2.98050986 | 2.62360657 |
| Э        | 10 | 1405_i_at        | 6.56570279 | 6.28698926 | 4.91331257 | 7.08328018 | 8.85548288 | 8.73393312 | 7.00368174 | 9.20074992 | 7.56290044 | 7.08242829 | 8.62383444 | 6.68093219 | 6.64318345 | 9.43959551 | 7.59805121 |
| Ð        | 11 | 1431_at          | 2.8344133  | 2.78755371 | 3.18847354 | 2.88404293 | 2.93762587 | 2.89823055 | 3.05244607 | 2.78417436 | 2.90076657 | 3.09872342 | 2.90011368 | 2.90453628 | 3.00948297 | 3.1228764  | 2.74311179 |
| F        | 12 | 1438_at          | 2.08209982 | 2.05046004 | 2.1380021  | 2.08249533 | 2.09277912 | 2.1099077  | 2.11854206 | 2.04375093 | 2.09150681 | 2.13821066 | 2.0847717  | 2.09495798 | 2.13115924 | 2.1353399  | 2.04584187 |
|          | 13 | 1487_at          | 5.54120155 | 5.35862078 | 5.46869731 | 5.52103094 | 5.51418122 | 5.55106929 | 5.4161482  | 5.44489428 | 5.24818751 | 5.56301699 | 5.42549692 | 5.54960823 | 5.82915837 | 5.56467106 | 5.50830277 |
| 1        |    | 1494_f_at        | 2.54757724 | 2.37930712 | 2.62709071 | 2.38194831 | 2.44028963 | 2.4526832  | 2.4825064  | 2.4207785  | 2.60409103 | 2.49857683 | 2.43723118 | 5.2354071  | 2.48110506 | 2.49964028 | 2.41921899 |
| S        | 15 | 1598 <u>g</u> at | 2.7304057  | 2.67040188 | 2.59698585 | 7.93551881 | 5.34425285 | 3.13179926 | 6.57015445 | 4.4323031  | 5.18399788 | 3.88981767 | 3.85670525 | 4.88119006 | 2.70978966 | 3.85692387 | 2.75953351 |
| <u>e</u> | 16 | 160020_at        | 2.1655937  | 2.14026455 | 2.21194547 | 2.16062823 | 2.17141169 | 2.17996571 | 2.2008294  | 2.1242019  | 2.18214481 | 2.2125988  | 2.1687426  | 2.43832316 | 2.19630922 | 2.21189546 | 2.12666118 |
| D        | 17 | 1729_at          | 7.01826581 | 6.8620684  | 6.2748978  | 5.90084028 | 6.41997144 | 6.40378323 | 6.47535055 | 6.56605198 | 6.69687512 | 6.47743846 | 6.83935011 | 6.77296396 | 7.34317394 | 6.89120616 | 6.7314662  |
|          |    | 1773_at          | 1.65915684 | 1.63701805 | 1.72741313 | 1.65439452 | 1.67083716 | 1.67811596 | 1.70139307 | 1.64332524 | 1.67628101 | 1.71880406 | 1.6714433  | 1.67212824 | 1.70672522 | 1.71772136 | 1.6204299  |
| Ē        |    | 177_at           | 2.94878496 | 2.86836877 | 3.14969855 | 2.97643251 | 2.98608845 | 3.03205184 | 3.08209486 |            | 2.97919094 | 3.13159394 | 2.92393653 | 3.02575255 | 3.12900366 | 3.1146516  | 2.95474175 |
| g        |    | 179_at           | 0.57716722 | 0.55275837 | 0.63200969 | 0.57298874 |            | 0.59124817 |            |            | 0.59422142 |            | 0.58159784 |            |            | 0.61528153 | 0.5432499  |
| S        |    | 1861_at          | 1.18690202 | 1.15813312 | 1.22122377 |            |            |            |            | 1.15859558 |            |            | 1.18805205 |            | 1.22668581 | 1.2303746  |            |
|          |    | 200000_s_at      | 9.20648723 | 9.16145477 | 8.7773438  |            |            | 9.11532903 |            | 8.6501605  |            |            |            | 9.0088335  |            |            | 8.67504714 |
| S        |    | 200001_at        | 10.2111295 | 9.64241927 |            |            |            | 9.54725821 |            | 9.20829652 |            |            | 9.78220873 |            |            |            |            |
| Ū        |    | 200002_at        | 11.7416844 | 12.5435781 | 12.5946606 |            | 11.7915808 |            |            |            |            |            | 11.1801336 |            |            |            | 12.0298037 |
| Ũ        |    | 200003_s_at      | 11.9080732 |            | 11.8924837 | 11.8114427 | 11.9696242 |            |            | 12.4044847 |            |            | 11.214454  | 13.10743   |            |            | 11.8707809 |
| ÷        |    | 200004_at        | 12.8626281 | 13.0318466 |            |            | 12.5629091 | 13.1340588 |            | 12.8029198 |            | 13.1286809 | 12.748781  | 13.0629905 | 13.0935061 | 13.030989  | 13.4212022 |
| <u> </u> |    | 200005_at        | 11.2365327 | 11.0171526 |            |            | 11.1230332 | 11.294694  | 10.7547452 | 10.900953  |            | 10.5860537 | 10.8269418 |            |            |            |            |
| O        |    | 200006_at        | 13.4345486 | 13.07559   |            |            | 13.0994422 | 13.4686359 |            |            |            |            | 13.5249391 |            |            |            | 13.2935    |
|          | 29 | 200007_at        | 13.4323845 | 13.8222834 | 13.8399309 | 13.5619045 | 12.9873835 | 13.1472475 | 13.6921953 | 13.5192546 | 13.8453793 | 14.0467732 | 13.594668  | 13.7081125 | 13.3744476 | 13.8363235 | 13.4141853 |



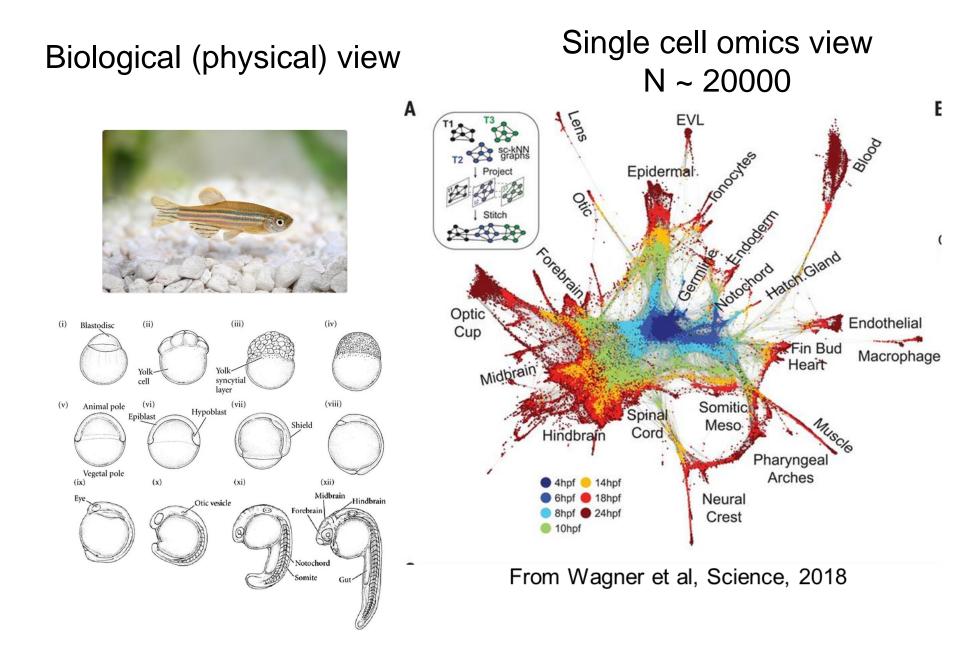


N=784





### Single cell omics: biology becomes a field of data science



Data types: most of the world data are not numbers!

- 1) Numerical
  - Example: *weight, height*
- 2) Categorical:
  - Ordinal
    - Example: age range (infant, toddler, teenager, young, adult, senior)
  - Nominal
    - > Example: *eye color, mothertongue*

Simplest data type: BINARY (Yes/No, False/True, 0/1)

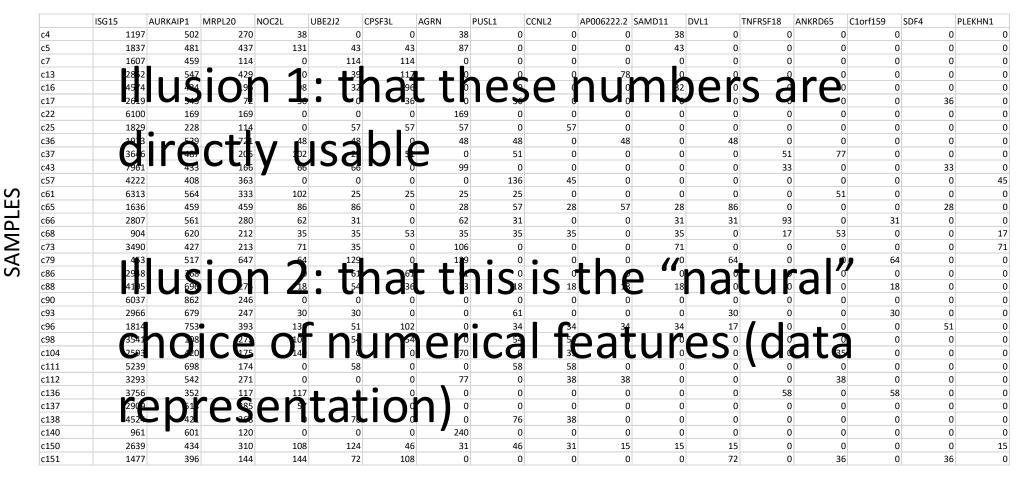
## All *raw data* – even that which looks like numbers – must be prepared for machine learning algorithms!

|      | ISG15 | AURKAIP1 | MRPL20 | NOC2L | UBE2J2 | CPSF3L | AGRN | PUSL1 | CC  | NL2 | AP006222.2 | SAMD11         | DVL1 | 1  | FNFRSF18 | ANKRD65 | C1orf159 | SDF4 | PLEK | .HN1 |
|------|-------|----------|--------|-------|--------|--------|------|-------|-----|-----|------------|----------------|------|----|----------|---------|----------|------|------|------|
| c4   | 1197  | 502      | 270    | 38    | 0      | 0      | :    | 38    | 0   | 0   | (          | ) 3            | 88   | 0  | C        | )       | 0        | 0    | 0    | 0    |
| c5   | 1837  | 481      | 437    | 7 131 | 43     | 43     |      | 37    | 0   | 0   | (          | 2              | 13   | 0  | C        | )       | 0        | 0    | 0    | C    |
| с7   | 1607  | 459      | 114    | 1 0   | 114    | 114    |      | 0     | 0   | 0   | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | C    |
| c13  | 2852  | 547      | 429    | 0     | 39     | 117    |      | 0     | 0   | 0   | 78         | 5              | 0    | 0  | C        | )       | 0        | 0    | 0    | 0    |
| c16  | 4574  | 424      | 196    | 5 98  | 32     | 196    |      | 0     | 0   | 0   | (          | 9 3            | 32   | 0  | C        | )       | 0        | 0    | 0    | 0    |
| c17  | 2619  | 545      | 72     | 2 36  | 0      | 36     |      | 0     | 36  | 0   | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 36   | C    |
| c22  | 6100  | 169      | 169    | ) 0   | 0      | 0      | 1    | 59    | 0   | 0   | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | C    |
| c25  | 1829  | 228      | 114    | 1 0   | 57     | 57     |      | 57    | 0   | 57  | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | C    |
| c36  | 1973  | 529      | 721    | 48    | 48     | 0      |      | 18    | 48  | 0   | 48         | :              | 0    | 48 | C        | )       | 0        | 0    | 0    | C    |
| c37  | 3646  | 487      | 205    | 5 102 | 25     | 51     |      | 0     | 51  | 0   | (          | )              | 0    | 0  | 51       | . 7     | 77       | 0    | 0    | 0    |
| c43  | 7961  | 433      | 166    | 66 66 | 66     | 0      |      | 99    | 0   | 0   | (          | )              | 0    | 0  | 33       | 1       | 0        | 0    | 33   | C    |
| c57  | 4222  | 408      | 363    | 3 0   | 0      | 0      |      | 0     | 136 | 45  | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | 45   |
| c61  | 6313  | 564      | 333    | 3 102 | 25     | 25     |      | 25    | 25  | 0   | (          | )              | 0    | 0  | C        | ) 5     | 51       | 0    | 0    | 0    |
| c65  | 1636  | 459      | 459    | 86    | 86     | 0      | :    | 28    | 57  | 28  | 57         | 2              | 28   | 86 | C        | )       | 0        | 0    | 28   | 0    |
| c66  | 2807  | 561      | 280    | 62    | 31     | 0      |      | 52    | 31  | 0   | (          | ) 3            | 81   | 31 | 93       | 1       | 0        | 31   | 0    | 0    |
| c68  | 904   | 620      | 212    | 2 35  | 35     | 53     | :    | 35    | 35  | 35  | (          | ) 3            | 5    | 0  | 17       | ' 5     | 53       | 0    | 0    | 17   |
| c73  | 3490  | 427      | 213    | 3 71  | 35     | 0      | 1    | 06    | 0   | 0   | (          | - <del>-</del> | '1   | 0  | C        | )       | 0        | 0    | 0    | 71   |
| c79  | 453   | 517      | 647    | 64    | 129    | 0      | 1    | 29    | 0   | 0   | (          | )              | 0    | 64 | C        | )       | 0        | 64   | 0    | 0    |
| c86  | 2948  | 368      | C      | 0 0   | 61     | 61     |      | 51    | 0   | 0   | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | 0    |
| c88  | 4105  | 696      | 274    | 18    | 54     | 36     |      | 73    | 18  | 18  | 18         | 1              | .8   | 0  | C        | )       | 0        | 18   | 0    | 0    |
| c90  | 6037  | 862      | 246    | 5 0   | 0      | 0      |      | 0     | 0   | 0   | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | 0    |
| c93  | 2966  | 679      | 247    | 7 30  | 30     | 0      |      | 0     | 61  | 0   | (          | )              | 0    | 30 | C        | )       | 0        | 30   | 0    | 0    |
| c96  | 1814  | 753      | 393    | 3 136 | 51     | 102    |      | 0     | 34  | 34  | 34         |                | 34   | 17 | C        | )       | 0        | 0    | 51   | 0    |
| c98  | 3541  | 108      | 272    | 2 108 | 54     | 54     |      | 0     | 54  | 54  | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | 0    |
| c104 | 2593  | 420      | 175    | 5 140 | 0      | 0      | -    | 70    | 0   | 35  | (          | )              | 0    | 0  | C        | ) 3     | 85       | 0    | 0    | 0    |
| c111 | 5239  | 698      | 174    | l 0   | 58     | 0      |      | 0     | 58  | 58  | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | 0    |
| c112 | 3293  | 542      | 271    | L 0   | 0      | 0      | -    | 77    | 0   | 38  | 38         | 5              | 0    | 0  | C        | ) 3     | 88       | 0    | 0    | 0    |
| c136 | 3756  | 352      | 117    | / 117 | 0      | 0      |      | 0     | 0   | 0   | (          | )              | 0    | 0  | 58       | 5       | 0        | 58   | 0    | 0    |
| c137 | 2909  | 513      | 285    | 5 57  | 0      | 0      |      | 0     | 0   | 0   | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | 0    |
| c138 | 4524  | 421      | 268    | 3 0   | 76     | 0      |      | 0     | 76  | 38  | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | 0    |
| c140 | 961   | 601      | 120    | 0 0   | 0      | 0      | 24   | 10    | 0   | 0   | (          | )              | 0    | 0  | C        | )       | 0        | 0    | 0    | C    |
| c150 | 2639  | 434      | 310    | 108   | 124    | 46     |      | 31    | 46  | 31  | 15         | 1              | .5   | 15 | C        | )       | 0        | 0    | 0    | 15   |
| c151 | 1477  |          | 144    | 144   | 72     | 108    |      | 0     | 0   | 0   |            |                | 0    | 72 | C        | ) 3     | 86       | 0    | 36   | 0    |

SAMPLES

#### Example: RNASeq count table

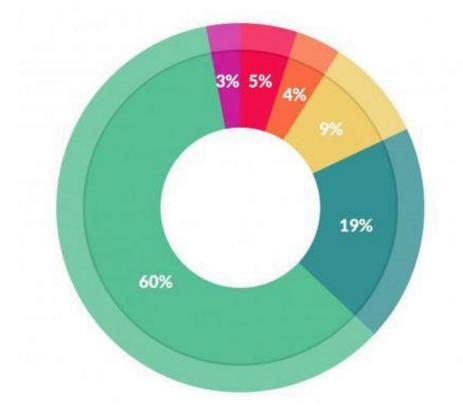
## All *raw data* – even that which looks like numbers – must be prepared for machine learning algorithms!



Example: RNASeq count table

## Data cleaning/preprocessing/representation

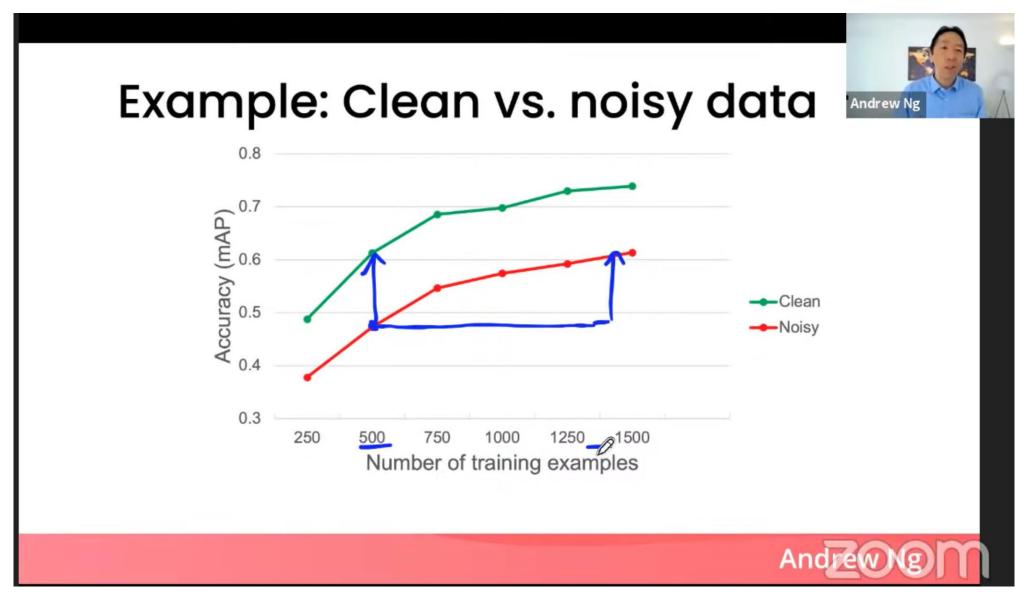
Data Preprocessing is a technique that is used to convert the raw data into a "clean" data set



#### What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

https://www.forbes.com/sites/gilpress/2016/03/23/datapreparation-most-time-consuming-least-enjoyable-datascience-task-survey-says/#58fdfc6f637d



https://www.youtube.com/watch?v=06-AZXmwHjo

## What is BIG DATA?

## BIG DATA, many definitions and aspects

### Volume

- Large number of observations (but how many, 1000, 1000000?)
- Large number of object features
- Large volume : difficult to manipulate on a single computer

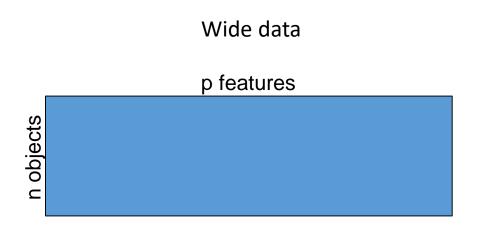
### Variety

 Large variety of feature types (completeness of object characterization)

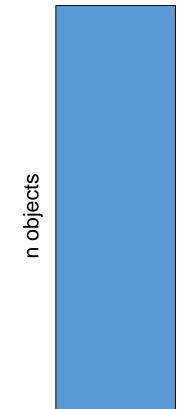
### Velocity

• The speed at which the data is generated and processed

# Large p, small n



Classical statistics p features



### BIG DATA: n >> 1 WIDE DATA: p>>n BIG DATA IN GENOMICS: p>>n>>1 (frequently)

## WIDE DATA IN GENOMICS: p>>n

Length of genome : 3x10<sup>9</sup>

```
Number of genes : ~10<sup>4</sup>
```

Number of proteforms : ~10<sup>5</sup>

```
Number of SNPs : ~10<sup>6</sup>
```

Number of CpGs : ~10<sup>7</sup>

Number of tumors in a typical retrospective study: ~10<sup>2</sup>

n

Special case: single cell datasets (question: is it a "big data" or not)



D. Donoho, from Stanford University webpage

# High-dimensional post-classical world: Big Data, Bigger Dimension

- The number of attributes *p* >> The number of examples *N*
- This *post-classical* world is different from the 'classical world'.
- The classical methodology was developed for the 'classical world' based on the assumption of p < N, and  $N \rightarrow \infty$ .
- These results all fail if p > N.

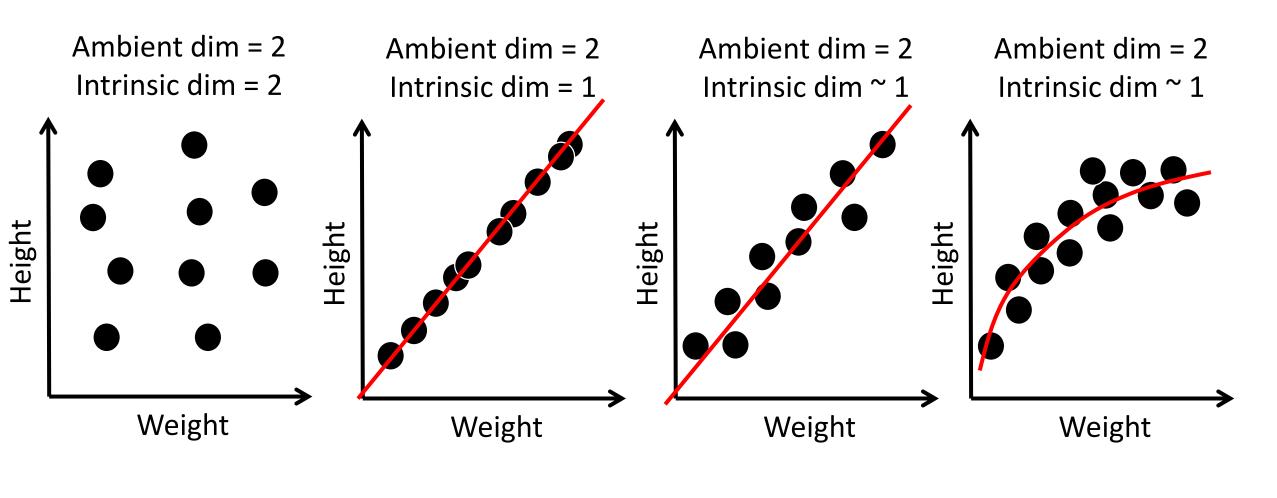
### • The *p* > *N* case is not anomalous; it is the generic case.

Donoho, D.L. High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality. Invited Lecture at Mathematical Challenges of the 21st Century, AMS.

## What is "curse of dimensionality"?

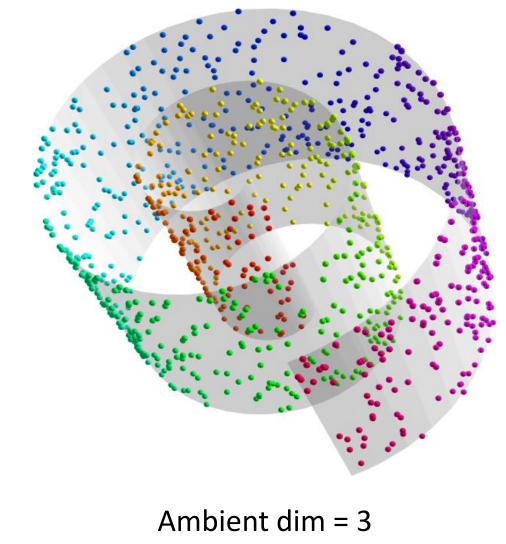
# Curse of dimensionality and intrinsic data dimension

- Curse of dimensionality : various phenomena that arise when analyzing and organizing data in high-dimensional spaces that do not occur in lowdimensional settings
- *p* = ambient (full) dimensionality (number of variables after data preprocessing)
- However, in many cases, variables contain partially redundant information
- Intrinsic dimensionality (ID): 'how many variables are needed to generate a good approximation of the data'



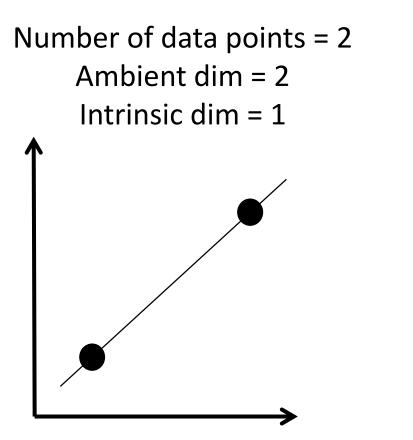
Data manifold

#### Swiss roll dataset

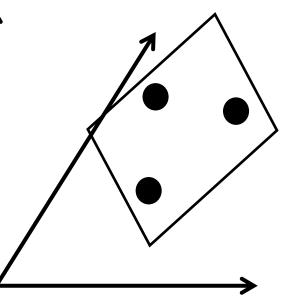


Intrinsic dim = 2

Intrinsic dimensionality can not be bigger than the number of data points minus 1



Number of data points = 3 Ambient dim = 3 Intrinsic dim = 2



Curse of dimensionality and genomics data

When number of features >> number of objects

When the *intrinsic dimension of the data* > log2(number of objects)

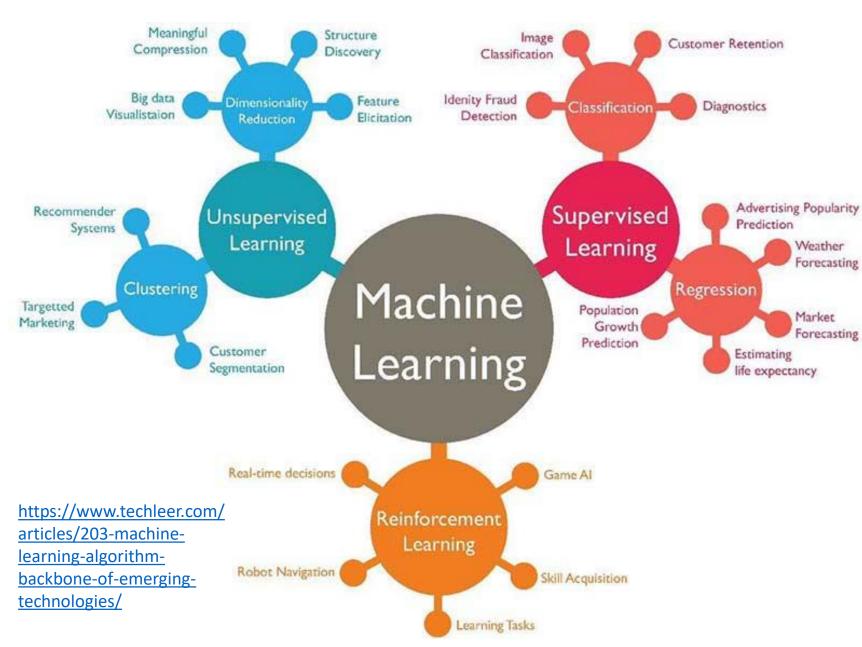
Fortunately, genomics data are frequently intrinsically relatively lowdimensional

For example, ID of typical transcriptomic datasets can be estimated in 20-30 (may be, even much less)

Some types of genomics data are intrinsically high-dimensional (e.g., mutation matrices)

What are the types of machine learning models?

# Types of machine learning approaches



Self-supervised learning: Pretend there is a part of the input you do not know and predict that [Y.Le Cun] Language models, watching videos and predicting the future frames, AlphaZero ...

Flavors or special tricks: Representation learning, transfer learning, one-shot learning, semi-supervised learning etc... What is the difference between classification and regression?

## Supervised learning

"Data"

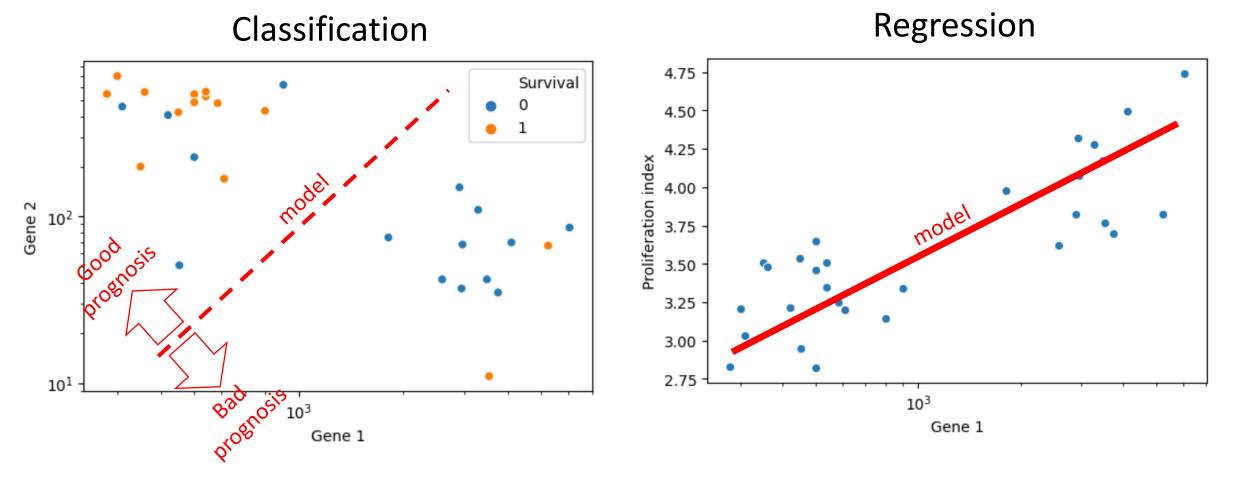
#### "Labels"

#### **Independent or explanatory variables : X**

**Dependent variables : y** 

|           | Gene 1 | Gene 2 | Gene 3 | Gene 4 | Gene 5 | Gene 6 | Gene 7 | Gene 8 | Gene 9 | Gene 10 | Survival | Proliferation index |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|----------|---------------------|
| Sample 1  | 300    | 700    | 270    | 38     | 0      | 0      | 38     | 0      | 0      | 0       | 0        | 0.37940             |
| Sample 2  | 584    | 481    | 437    | 131    | 43     | 43     | 87     | 0      | 0      | 0       | 0        | 0.45072             |
| Sample 3  | 350    | 200    | 114    | 0      | 114    | 114    | 0      | 0      | 0      | 0       | 0        | 0.63810             |
| Sample 4  | 280    | 547    | 429    | 0      | 39     | 117    | 0      | 0      | 0      | 78      | 0        | 0.92688             |
| Sample 5  | 450    | 424    | 196    | 98     | 32     | 196    | 0      | 0      | 0      | 0       | 1        | 0.20938             |
| Sample 6  | 500    | 545    | 72     | 36     | 0      | 36     | 0      | 36     | 0      | 0       | 1        | 0.04551             |
| Sample 7  | 610    | 169    | 169    | 0      | 0      | 0      | 169    | 0      | 0      | 0       | 1        | 0.33923             |
| Sample 8  | 500    | 228    | 114    | 0      | 57     | 57     | 57     | 0      | 57     | 0       | 0        | 0.49039             |
| Sample 9  | 540    | 529    | 721    | 48     | 48     | 0      | 48     | 48     | 0      | 48      | 0        | 0.09787             |
| Sample 10 | 500    | 487    | 205    | 102    | 25     | 51     | 0      | 51     | 0      | 0       | 1        | 0.86256             |
| Sample 11 | 800    | 433    | 166    | 66     | 66     | 0      | 99     | 0      | 0      | 0       | 1        | 0.91319             |
| Sample 12 | 420    | 408    | 363    | 0      | 0      | 0      | 0      | 136    | 45     | 0       | 0        | 0.85531             |
| Sample 13 | 540    | 564    | 333    | 102    | 25     | 25     | 25     | 25     | 0      | 0       | 1        | 0.36976             |
| Sample 14 | 310    | 459    | 459    | 86     | 86     | 0      | 28     | 57     | 28     | 57      | 0        | 0.73904             |
| Sample 15 | 360    | 561    | 280    | 62     | 31     | 0      | 62     | 31     | 0      | 0       | 1        | 0.69861             |
| Sample 16 | 904    | 620    | 212    | 35     | 35     | 53     | 35     | 35     | 35     | 0       | 0        | 0.46501             |
| Sample 17 | 3490   | 42     | 213    | 71     | 35     | 0      | 106    | 0      | 0      | 0       | 1        | 0.70675             |
| Sample 18 | 453    | 51     | 647    | 64     | 129    | 0      | 129    | 0      | 0      | 0       | 0        | 0.82493             |
| Sample 19 | 2948   | 37     | 0      | 0      | 61     | 61     | 61     | 0      | 0      | 0       | 1        | 0.30731             |
| Sample 20 | 4105   | 70     | 274    | 18     | 54     | 36     | 73     | 18     | 18     | 18      | 0        | 0.87440             |

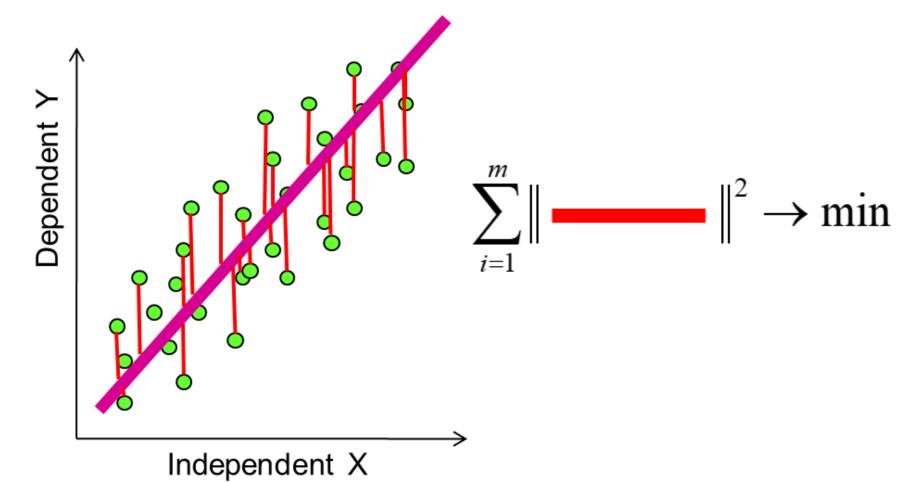
#### Supervised learning



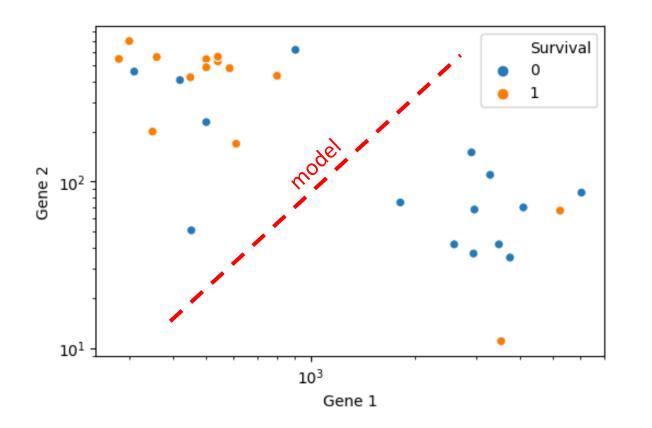
Problem of visualization

# Mean Squared Error and R<sup>2</sup>

- Linear regression minimizes the squared sum of residuals (model errors)
- MSE = Mean Squared Error



# Classification error

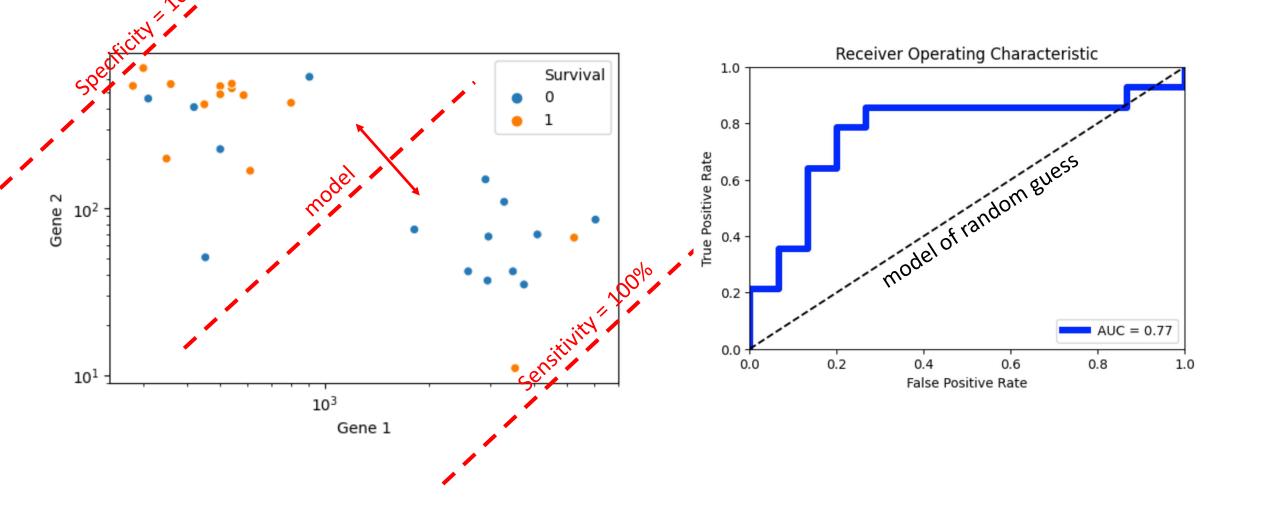


#### **Survivial Prediction Error**

True Positives (TP) = 12 True Negatives (TN) = 10 False Positives (FP) = 5 False Negatives (FN) = 2

Accuracy = (TP+TN)/all = 76% Sensitivity = TP/(TP+FN) = 86% Specificity = TN/(TN+FP) = 66%

## Classification error: ROC curve and AUC



What is the difference between dimensionality reduction and clustering?

## Unsupervised learning

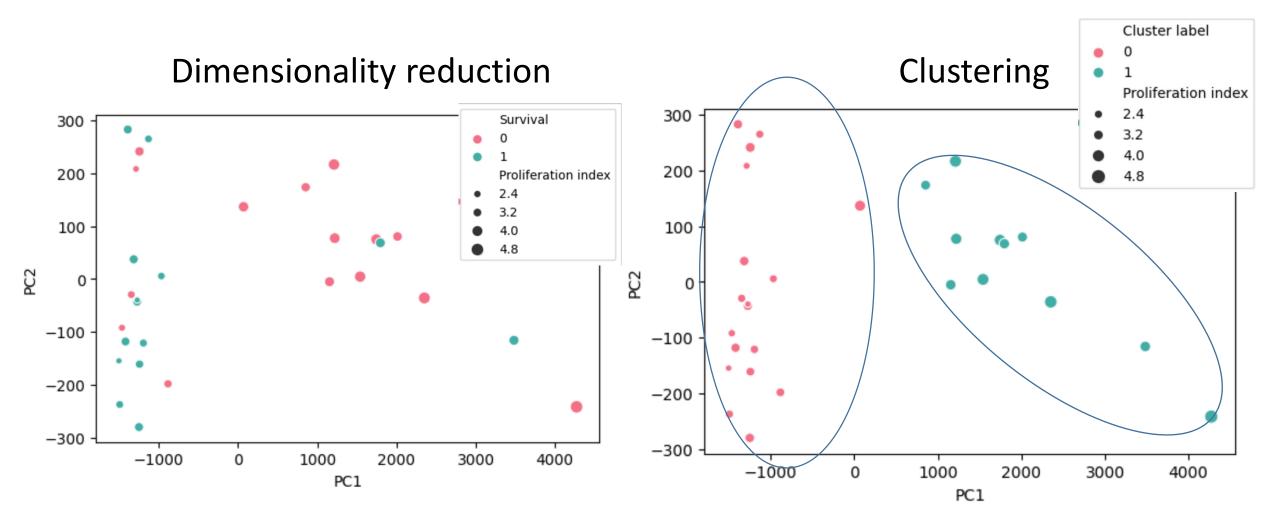
## We do not use them to build the model

#### **Independent or explanatory variables : X**

#### **Dependent variables : y**

|           | Gene 1 | Gene 2 | Gene 3 | Gene 4 | Gene 5 | Gene 6 | Gene 7 | Gene 8 | Gene 9 | Gene 10 | Survival | Proliferation index |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|----------|---------------------|
| Sample 1  | 300    | 700    | 270    | 38     | 0      | 0      | 38     | 0      | 0      | 0       | 0        | 0.37940             |
| Sample 2  | 584    | 481    | 437    | 131    | 43     | 43     | 87     | 0      | 0      | 0       | 0        | 0.45072             |
| Sample 3  | 350    | 200    | 114    | 0      | 114    | 114    | 0      | 0      | 0      | 0       | 0        | 0.63810             |
| Sample 4  | 280    | 547    | 429    | 0      | 39     | 117    | 0      | 0      | 0      | 78      | 0        | 0.92688             |
| Sample 5  | 450    | 424    | 196    | 98     | 32     | 196    | 0      | 0      | 0      | 0       | 1        | 0.20938             |
| Sample 6  | 500    | 545    | 72     | 36     | 0      | 36     | 0      | 36     | 0      | 0       | 1        | 0.04551             |
| Sample 7  | 610    | 169    | 169    | 0      | 0      | 0      | 169    | 0      | 0      | 0       | 1        | 0.33923             |
| Sample 8  | 500    | 228    | 114    | 0      | 57     | 57     | 57     | 0      | 57     | 0       | 0        | 0.49039             |
| Sample 9  | 540    | 529    | 721    | 48     | 48     | 0      | 48     | 48     | 0      | 48      | 0        | 0.09787             |
| Sample 10 | 500    | 487    | 205    | 102    | 25     | 51     | 0      | 51     | 0      | 0       | 1        | 0.86256             |
| Sample 11 | 800    | 433    | 166    | 66     | 66     | 0      | 99     | 0      | 0      | 0       | 1        | 0.91319             |
| Sample 12 | 420    | 408    | 363    | 0      | 0      | 0      | 0      | 136    | 45     | 0       | 0        | 0.85531             |
| Sample 13 | 540    | 564    | 333    | 102    | 25     | 25     | 25     | 25     | 0      | 0       | 1        | 0.36976             |
| Sample 14 | 310    | 459    | 459    | 86     | 86     | 0      | 28     | 57     | 28     | 57      | 0        | 0.73904             |
| Sample 15 | 360    | 561    | 280    | 62     | 31     | 0      | 62     | 31     | 0      | 0       | 1        | 0.69861             |
| Sample 16 | 904    | 620    | 212    | 35     | 35     | 53     | 35     | 35     | 35     | 0       | 0        | 0.46501             |
| Sample 17 | 3490   | 42     | 213    | 71     | 35     | 0      | 106    | 0      | 0      | 0       | 1        | 0.70675             |
| Sample 18 | 453    | 51     | 647    | 64     | 129    | 0      | 129    | 0      | 0      | 0       | 0        | 0.82493             |
| Sample 19 | 2948   | 37     | 0      | 0      | 61     | 61     | 61     | 0      | 0      | 0       | 1        | 0.30731             |
| Sample 20 | 4105   | 70     | 274    | 18     | 54     | 36     | 73     | 18     | 18     | 18      | 0        | 0.87440             |

## Unsupervised learning



Should data scientist understand the underlying principles (mathematics) of machine learning methods?

# Any AI (ML) method in four lines of code in any programming language

```
from libraryA import ModelType
```

```
model = ModelType(ModelParameter=par)
```

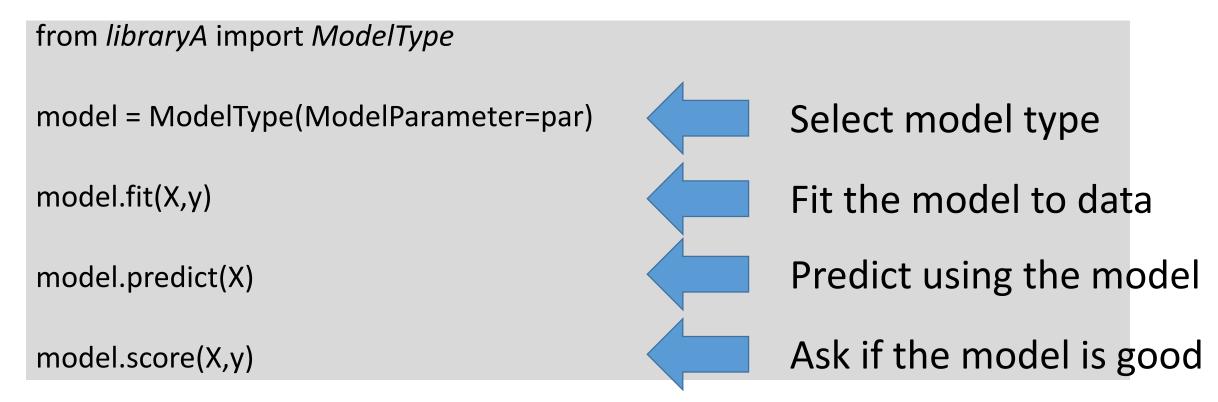
```
model.fit(X,Y)
```

```
model.predict(X)
```

```
model.score(X,Y)
```

The rest is either data pre-processing or presenting the results...

# Any AI (ML) method in four lines of code in any programming language



The rest is either data pre-processing or presenting the results...

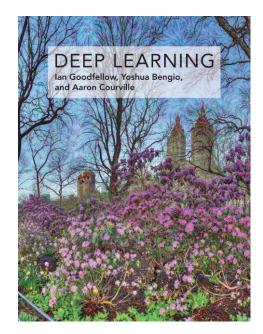
# "Zoo" of machine learning

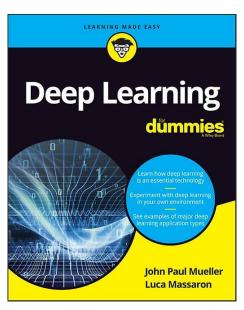
- "model.fit(),model.predict()" technological revolution makes machine learning technically accessible to almost anyone without strong background in mathematics
- This creates an illusion that this background is not needed
- This gives an impression that machine learning is a "zoo of algorithms"
- This attitude is pragmatic but VERY limited, also in applications
- Understanding mathematical principles helps in choosing learning hyperparameters
- Unfortunately, there is no unifying theory of machine learning created yet

# Myth of deep learning

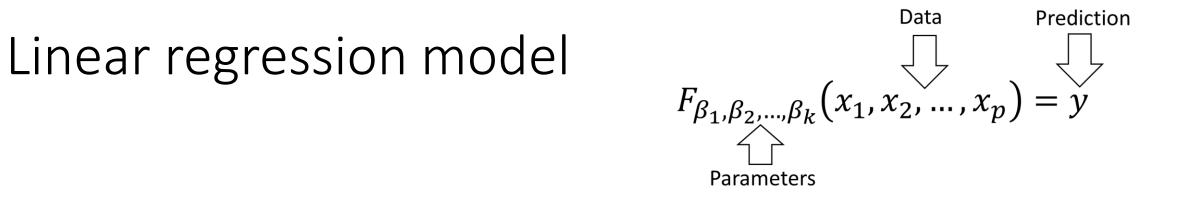
- No need in zoo of machine learning methods
- No need to understand math behind
- One just need DEEP LEARNING
- However, despite the hype, deep learning probably accounts for less than 1% of the machine learning projects in production right now. Most of the recommendation engines and online adverts that you encounter when you browse the net are not powered by deep learning. Most models used internally by companies to manage their subscribers, for example churn analysis, are not deep learning models. The models used by credit institutions to decide who gets credit do not use deep learning

https://subscription.packtpub.com/book/big\_data\_and\_business\_intelligence /9781788992893/1/ch01lvl1sec13/some-common-myths-about-deep-learning





# <u>Supervised learning:</u> What is the linear regression model?



$$y_i = eta_0 + eta_1 x_{i1} + \dots + eta_p x_{ip}$$

#### Number of parameters = number of features + 1

Gene 5 Gene 6 Gene 7 Gene 8 Gene 9 Gene 10  $\beta_0$ Gene 2 Gene 3 Gene 4 Gene 1 270 38 0 38 0 0 0 Sample 1 300 700 0 5.3 -6 0.1 -0.2 -110 β 0.3 -0.9 2.3 0.8 0.1 1.1

Prediction

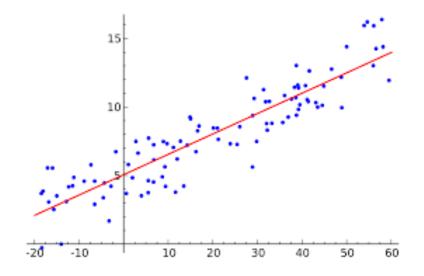
4.8

Linear regression

$$y_i = eta_0 + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^\mathsf{T} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

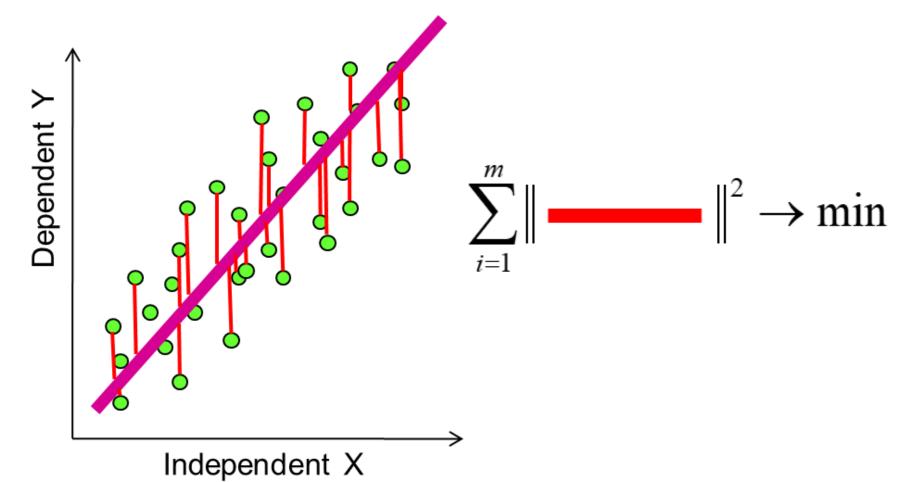
 $y_i = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} + \epsilon$ where, for i = n observations:  $y_i =$  dependent variable  $x_i =$  expanatory variables  $eta_0 =$  y-intercept (constant term)  $eta_p =$  slope coefficients for each explanatory variable

 $\epsilon$  = the model's error term (also known as the residuals)



# How the parameters of linear regression are computed?

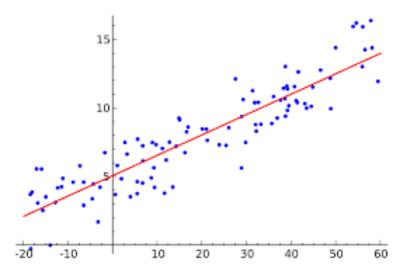
- Linear regression minimizes the squared sum of residuals (model errors)
- MSE = Mean Squared Error



Linear regression

$$y_i = eta_0 + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^\mathsf{T} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

- Linear regression: the father of all supervised machine learning methods (the idea comes from 1805!)
- The most used machine learning method today
- The first machine learning method to apply, and see what it gives
- Linear regression can be used to produce non-linear data models



## Linear regression is explainable ML model!

$$y_i = eta_0 + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^\mathsf{T} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

Coefficients  $\beta_1$ ,  $\beta_2$ , ...,  $\beta_p$  are comparable if independent variables are standardized (to z-scores) and have straingforward interpretation

It is possible to estimate statistical significance of  $\beta_i$  coefficients and provide p-value on the hypothesis that the coefficient is non-zero

This can help to simplify the regression

Other methods (such as regularization by lasso) for selecting important variables are readily available

## Linear regression caveats

- Main problem : Large p, small n
- If p is large and intrinsic dimension of X is small: many correlated features! The definition of parameters becomes unstable
- If p is large and intrinsic dimension of X is high : many features are non-relevant, problem of **overfitting**
- Well developed methodology for dealing with these problems: regularization

## Regularized linear regression

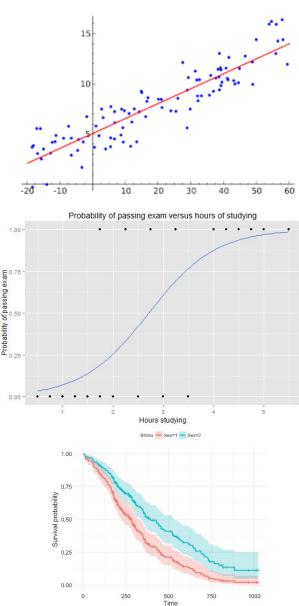
$$y_i = eta_0 + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^\mathsf{T} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

**Ridge regularization** : make the sum  $\sum \beta_i^2$  as small as possible among all closely accurate regression models

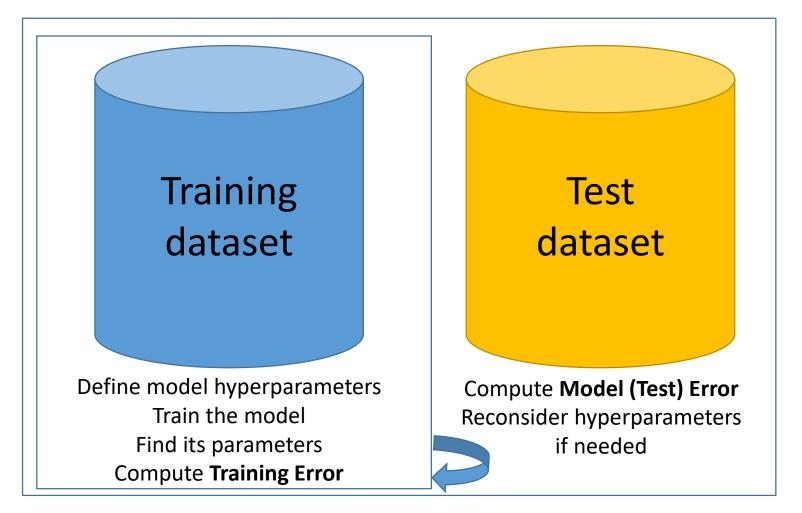
**Lasso regularization** : make the sum  $\sum |\beta_i|$  as small as possible among all closely accurate regression models

## Linear regression and its close relatives

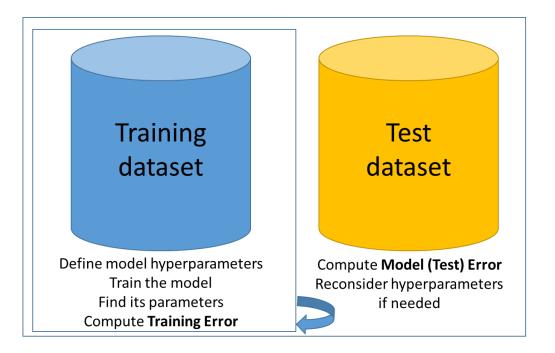
- Ordinary Least Square regression : when the dependent variable is continuous
- Logistic regression (logit): when the dependent variable is discrete (for example, binary)
- Survival Cox linear regression : when the target variable is a pair (follow up time + event)



# <u>Supervised learning:</u> Validating machine learning models

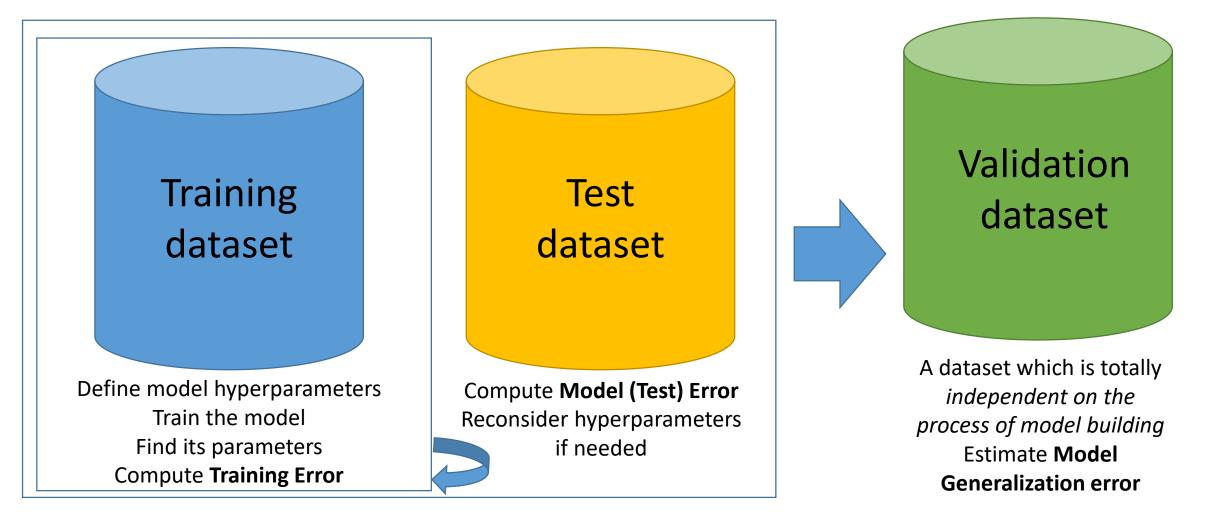


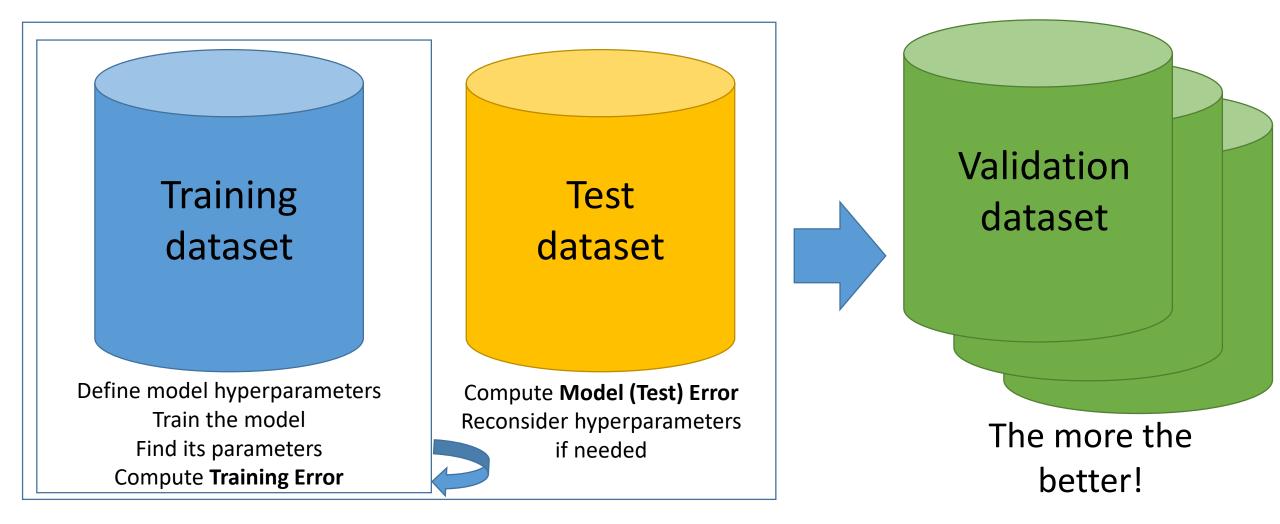
Confusion in terminology 'Test' and 'Validation'



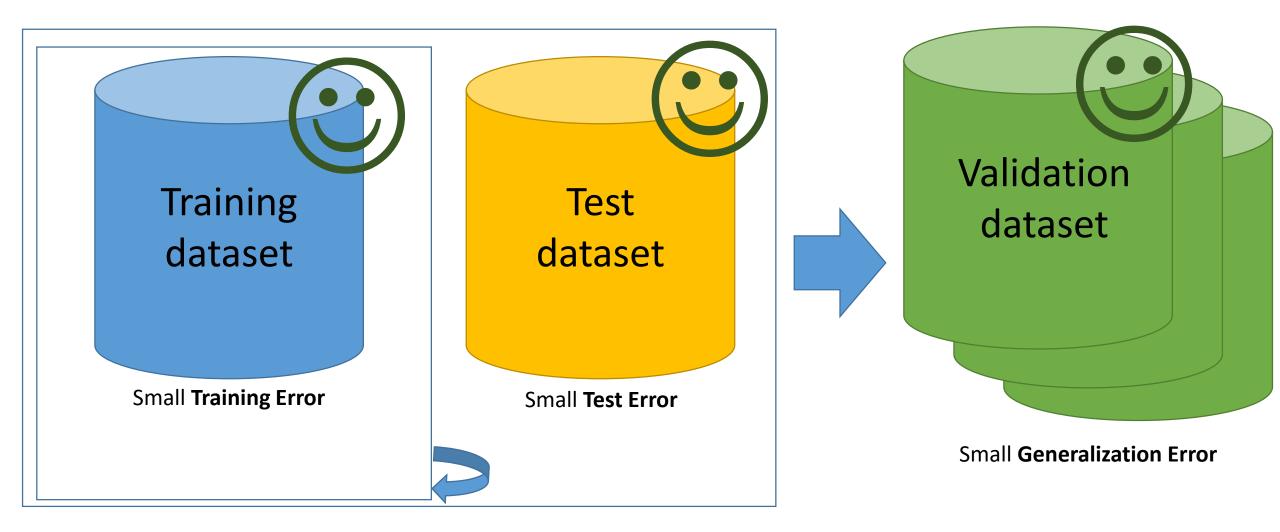
#### If there is no better choice...

|           | Gene 1 | Gene 2 | Gene 3 | Gene 4 | Gene 5 | Gene 6 | Gene 7 | Gene 8 | Gene 9 | Gene 10 | Survival | Proliferation index |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|----------|---------------------|
| Sample 1  | 300    | 700    | 270    | 38     | 0      | 0      | 38     | 0      | 0      | 0       | 0        | 0.37940             |
| Sample 2  | 584    | 481    | 437    | 131    | 43     | 43     | 87     | 0      | 0      | 0       | 0        | 0.45072             |
| Sample 3  | 350    | 200    | 114    | 0      | 114    | 114    | 0      | 0      | 0      | 0       | 0        | 0.63810             |
| Sample 4  | 280    | 547    | 429    | 0      | 39     | 117    | 0      | 0      | 0      | 78      | 0        | 0.92688             |
| Sample 5  | 450    | 424    | 196    | 98     | 32     | 196    | 0      | 0      | 0      | 0       | 1        | 0.20938             |
| Sample 6  | 500    | 545    | 72     | 36     | 0      | 36     | 0      | 36     | 0      | 0       | 1        | 0.04551             |
| Sample 7  | 610    | 169    | 169    | 0      | 0      | 0      | 169    | 0      | 0      | 0       | 1        | 0.33923             |
| Sample 8  | 500    | 228    | 114    | 0      | 57     | 57     | 57     | 0      | 57     | 0       | 0        | 0.49039             |
| Sample 9  | 540    | 529    | 721    | 48     | 48     | 0      | 48     | 48     | 0      | 48      | 0        | 0.09787             |
| Sample 10 | 500    | 487    | 205    | 102    | 25     | 51     | 0      | 51     | 0      | 0       | 1        | 0.86256             |
| Sample 11 | 800    | 433    | 166    | 66     | 66     | 0      | 99     | 0      | 0      | 0       | 1        | 0.91319             |
| Sample 12 | 420    | 408    | 363    | 0      | 0      | 0      | 0      | 136    | 45     | 0       | 0        | 0.85531             |
| Sample 13 | 540    | 564    | 333    | 102    | 25     | 25     | 25     | 25     | 0      | 0       | 1        | 0.36976             |
| Sample 14 | 310    | 459    | 459    | 86     | 86     | 0      | 28     | 57     | 28     | 57      | 0        | 0.73904             |
| Sample 15 | 360    | 561    | 280    | 62     | 31     | 0      | 62     | 31     | 0      | 0       | 1        | 0.69861             |
| Sample 16 | 904    | 620    | 212    | 35     | 35     | 53     | 35     | 35     | 35     | 0       | 0        | 0.46501             |
| Sample 17 | 3490   | 42     | 213    | 71     | 35     | 0      | 106    | 0      | 0      | 0       | 1        | 0.70675             |
| Sample 18 | 453    | 51     | 647    | 64     | 129    | 0      | 129    | 0      | 0      | 0       | 0        | 0.82493             |
| Sample 19 | 2948   | 37     | 0      | 0      | 61     | 61     | 61     | 0      | 0      | 0       | 1        | 0.30731             |
| Sample 20 | 4105   | 70     | 274    | 18     | 54     | 36     | 73     | 18     | 18     | 18      | 0        | 0.87440             |

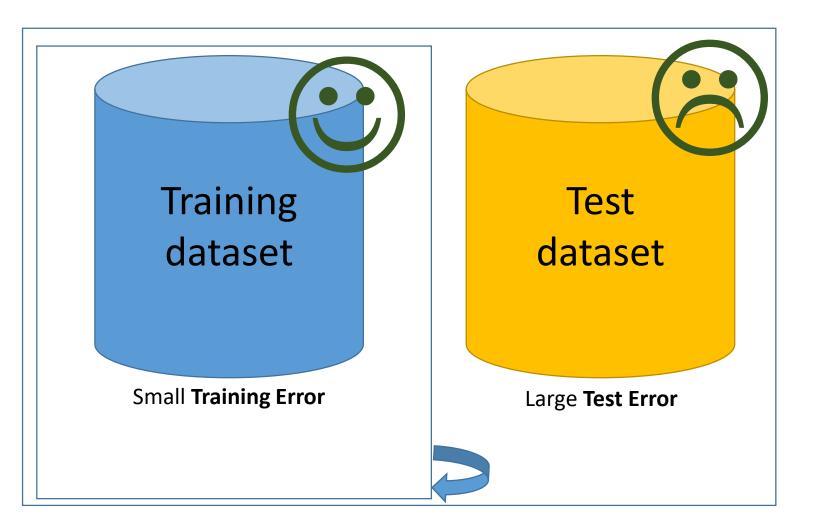




## Great ML model!



# Overfitting

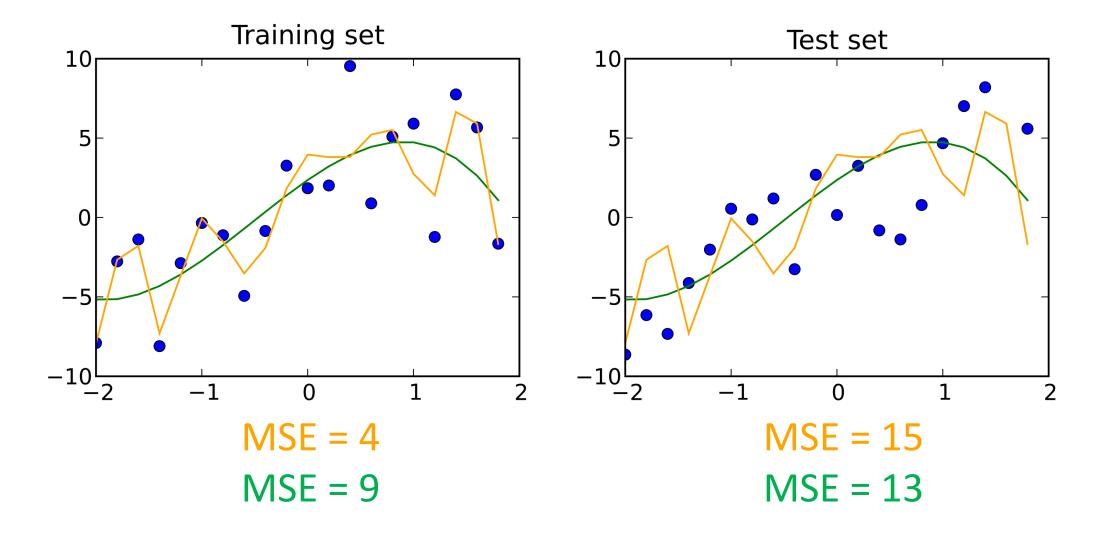


Causes for overfitting:

 Model is too complex, contains too many parameters

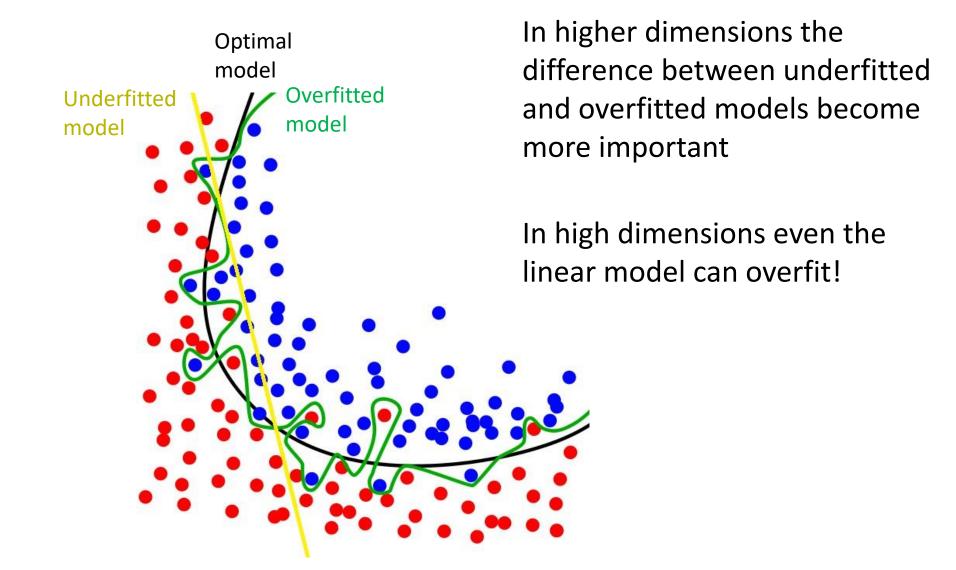
- 2) Strong outliers in the data
- 3) Too small training dataset

### Overfitting in regression



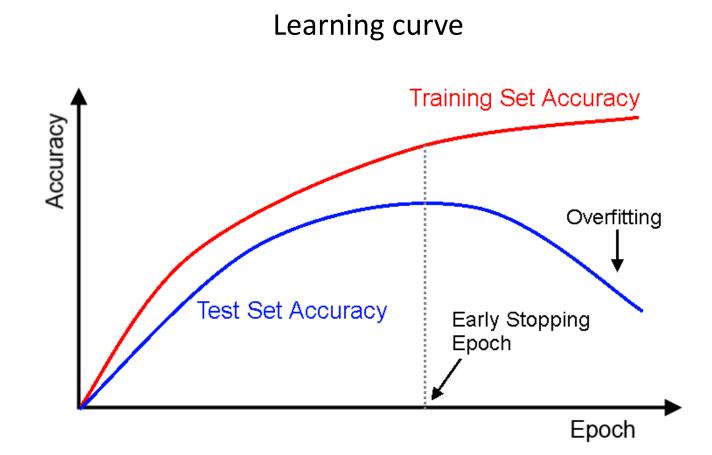
Green model is better!

### Overfitting in classification

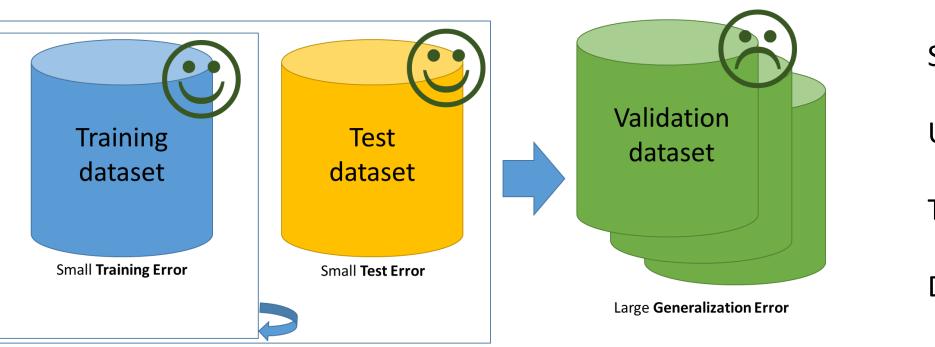


https://ezako.com/fr/les-concepts-doverfitting-et-underfitting-en-machine-learning/

### Overfitting in neural networks



### Lack of generalization



Causes for bad generalization:

Spurious correlations

Unrepresentative data

Train test leakage

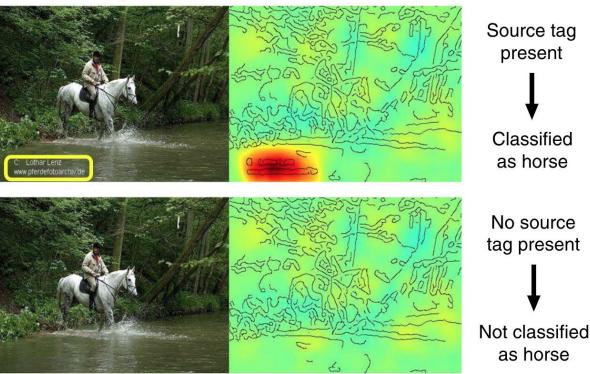
Data or concept drift

### "Clever Hans" effect in supervised machine learning



```
https://en.wikipedia.org/wiki/Clever Hans
```

Horse-picture from Pascal VOC data set

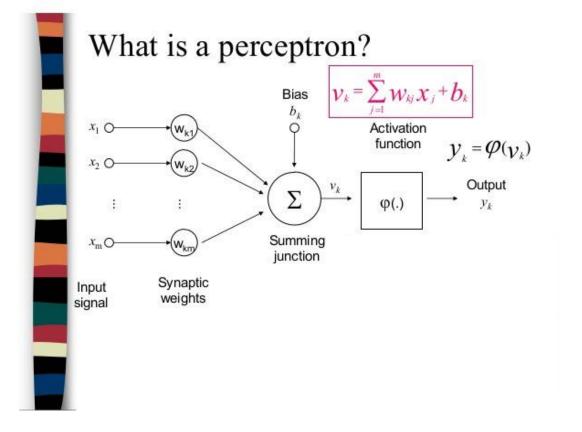


https://www.nature.com/articles/s41467-019-08987-4

### <u>Supervised learning:</u> From linear regression to deep learning

## Linear regression and a simple perceptron (formal neuron)

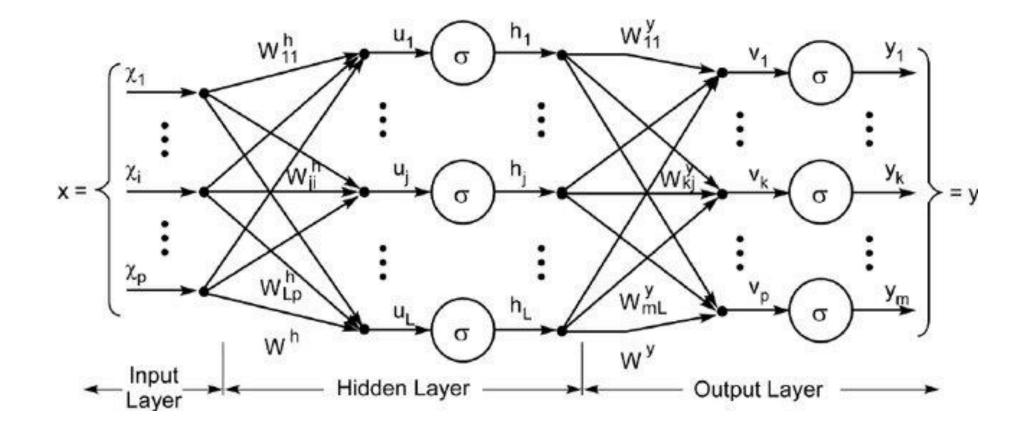
- Invented by Frank Rosenblatt in 1950s
- Elementary unit of any complex and deep neural network today



If  $\varphi(x) = x$ , then it is simple linear regression model

If  $\varphi(x)$  is a step-wise or sigmoidal function then it is a binary classifier just as logistic regression (even though they are trained with different algorithms!)

### Multilayered perceptron



https://ailephant.com/glossary/multilayer-perceptron/

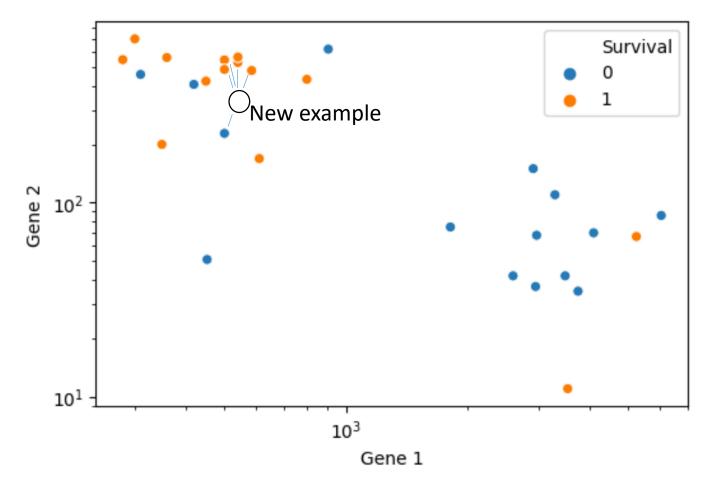
<u>Supervised learning:</u> Classification models

### Zoo of supervised machine learning models

- k-Nearest Neighbour classifier
- Random forests
- Discriminant analysis
  - Fisher Discriminant Analysis
  - Support Vector Machines
- Probabilistic methods based on modeling joint probability distribution:
  - Naïve Bayes
  - Bayesian networks

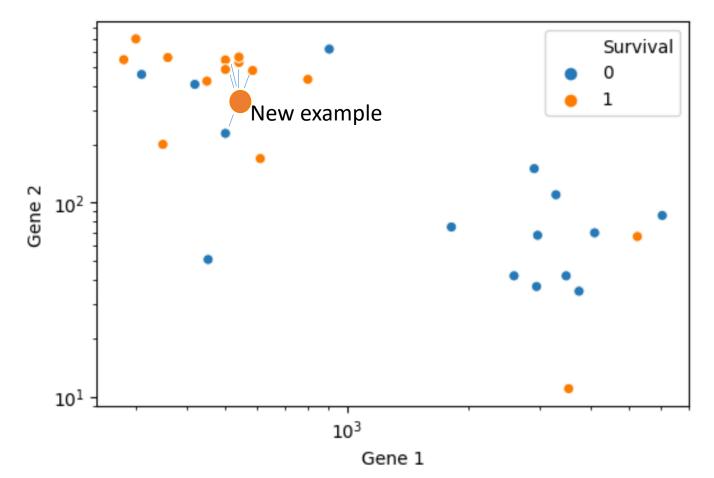
### Zoo of supervised machine learning models

• k-Nearest Neighbour classifier



### Zoo of supervised machine learning models

• k-Nearest Neighbour classifier



### Zoo of supervised machine learning models $\odot$

- k-Nearest Neighbour classifier simple to implement, one parameter!
- Random forests works out of the box, generalize well!
- Discriminant analysis
  - Fisher Discriminant Analysis
  - Support Vector Machines works with relatively few samples!
- Probabilistic methods based on modeling joint probability distribution:

```
Naïve Bayes – no overfitting!
```

Bayesian networks – creates generative data model!

### Zoo of supervised machine learning models $\boldsymbol{\Im}$

- k-Nearest Neighbour classifier poor in performance!
- Random forests parameters are too complex!
- Discriminant analysis:
  - Fisher Discriminant Analysis
  - Support Vector Machines does not scale well!
- Probabilistic methods based on modeling joint probability distribution:

```
Naïve Bayes – might create huge bias!
```

Bayesian networks – requires a lot of data!

<u>Unsupervised learning:</u> What is it? Why it is needed?

#### Unsupervised learning

"Unsupervised learning (UL) is a type of algorithm that learns patterns from untagged data." (c) Wikipedia

"Learning of intrinsic connections and interdependencies between features and objects"

Learning of a human being is essentially unsupervised (self-supervised) and observational

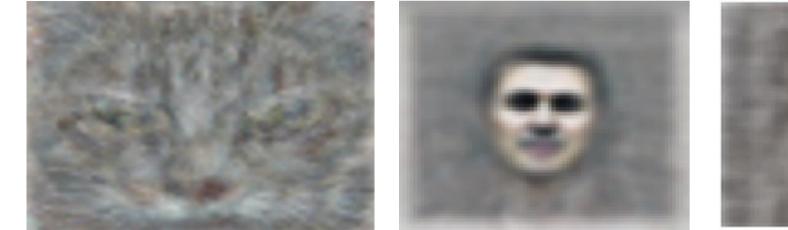
Unsupervised learning

Two main tasks:

- 1) <u>Clustering</u>: **de-novo labeling** of the data points, based on their mutual similarity
- 2) <u>Dimensionality reduction</u>: presenting high-dimensional data point cloud in low dimensional space, such that some important features are preserved

# Google cat: example of massive unsupervised learning







"Google cat"

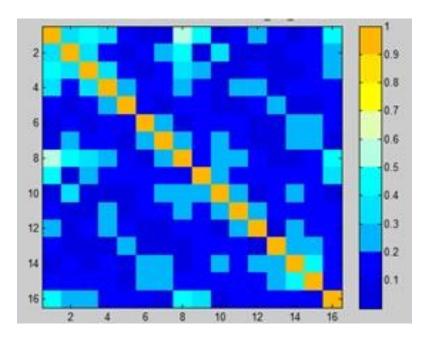
Le et al. Building High-level Features Using Large Scale Unsupervised Learning. ICML-2012

<u>Unsupervised learning:</u> Distance matrix and neighbourhood graph

### Distance matrix

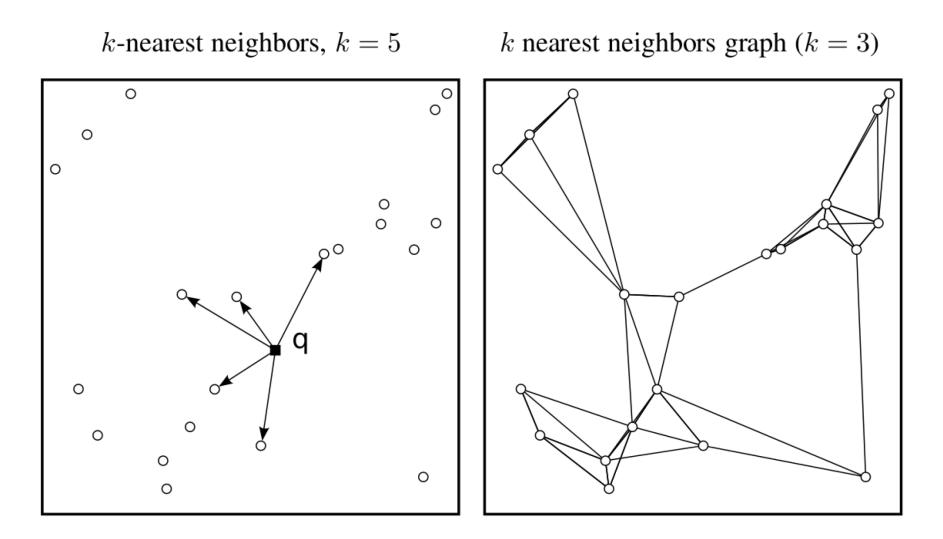
- Non-negative, symmetric
- Various distance functions: Euclidean, correlation-based, angular, Manhattan, etc.
- Convenient for searching close and distant neighbours
- Inconvenient to store cause the number of elements grows quadratically:

100000 \* 100000 \* 2 **bytes** (float16 **size**) = 20 Gb of **RAM** 



|          | $g_1$ | $g_2$ | $g_3$ | $g_4$ | $g_5$ | <b>g</b> 6 | $g_7$ | $g_8$ | <b>g</b> 9 | $g_{10}$ |
|----------|-------|-------|-------|-------|-------|------------|-------|-------|------------|----------|
| $g_1$    | 0.0   | 8.1   | 9.2   | 7.7   | 9.3   | 2.3        | 5.1   | 10.2  | 6.1        | 7.0      |
| $g_2$    | 8.1   | 0.0   | 12.0  | 0.9   | 12.0  | 9.5        | 10.1  | 12.8  | 2.0        | 1.0      |
| $g_3$    | 9.2   | 12.0  | 0.0   | 11.2  | 0.7   | 11.1       | 8.1   | 1.1   | 10.5       | 11.5     |
| $g_4$    | 7.7   | 0.9   | 11.2  | 0.0   | 11.2  | 9.2        | 9.5   | 12.0  | 1.6        | 1.1      |
| $g_5$    | 9.3   | 12.0  | 0.7   | 11.2  | 0.0   | 11.2       | 8.5   | 1.0   | 10.6       | 11.6     |
| $g_6$    | 2.3   | 9.5   | 11.1  | 9.2   | 11.2  | 0.0        | 5.6   | 12.1  | 7.7        | 8.5      |
| $g_7$    | 5.1   | 10.1  | 8.1   | 9.5   | 8.5   | 5.6        | 0.0   | 9.1   | 8.3        | 9.3      |
| $g_8$    | 10.2  | 12.8  | 1.1   | 12.0  | 1.0   | 12.1       | 9.1   | 0.0   | 11.4       | 12.4     |
| $g_9$    | 6.1   | 2.0   | 10.5  | 1.6   | 10.6  | 7.7        | 8.3   | 11.4  | 0.0        | 1.1      |
| $g_{10}$ | 7.0   | 1.0   | 11.5  | 1.1   | 11.6  | 8.5        | 9.3   | 12.4  | 1.1        | 0.0      |

### k Nearest Neighbor (kNN) graph



Requires N\*k integer numbers: for 100000 objects - 2-3 Mb of memory!

<u>Unsupervised learning:</u> Clustering methods

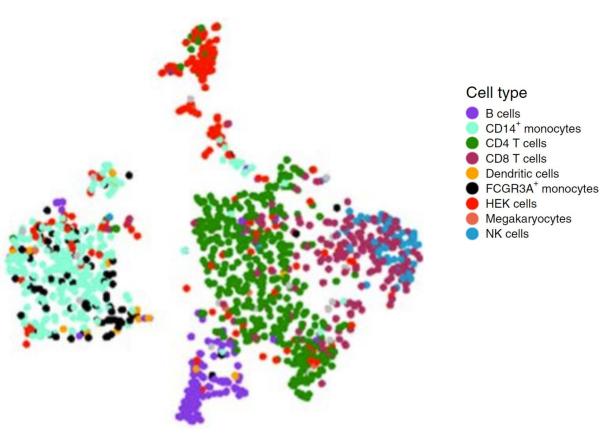
### Clustering problem in machine learning

The goal of clustering is to separate a finite, unlabeled data set into a finite and discrete set of "natural", "hidden" data structures



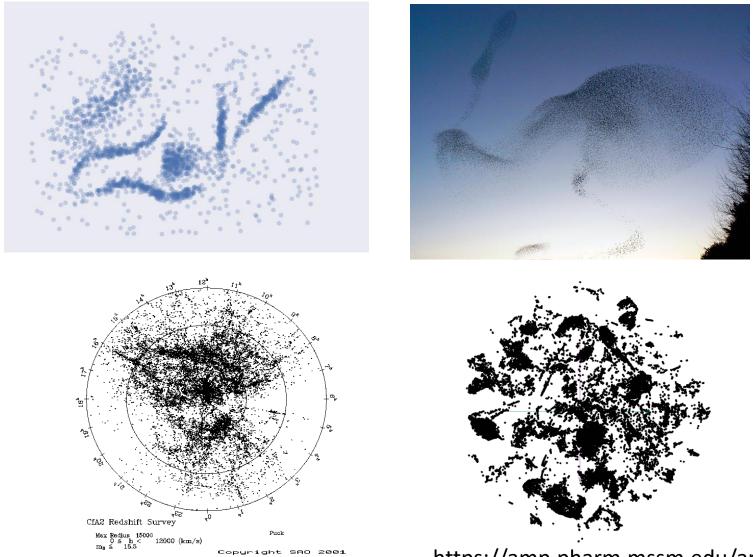
### Distinguish *classes* and *clusters*!!!

- Class = set of data points with the same pre-defined label
- Cluster = result of solving a clustering problem



From Mereu et al, Nature Biotech, 2020

### Real-life datasets can have complex clusters

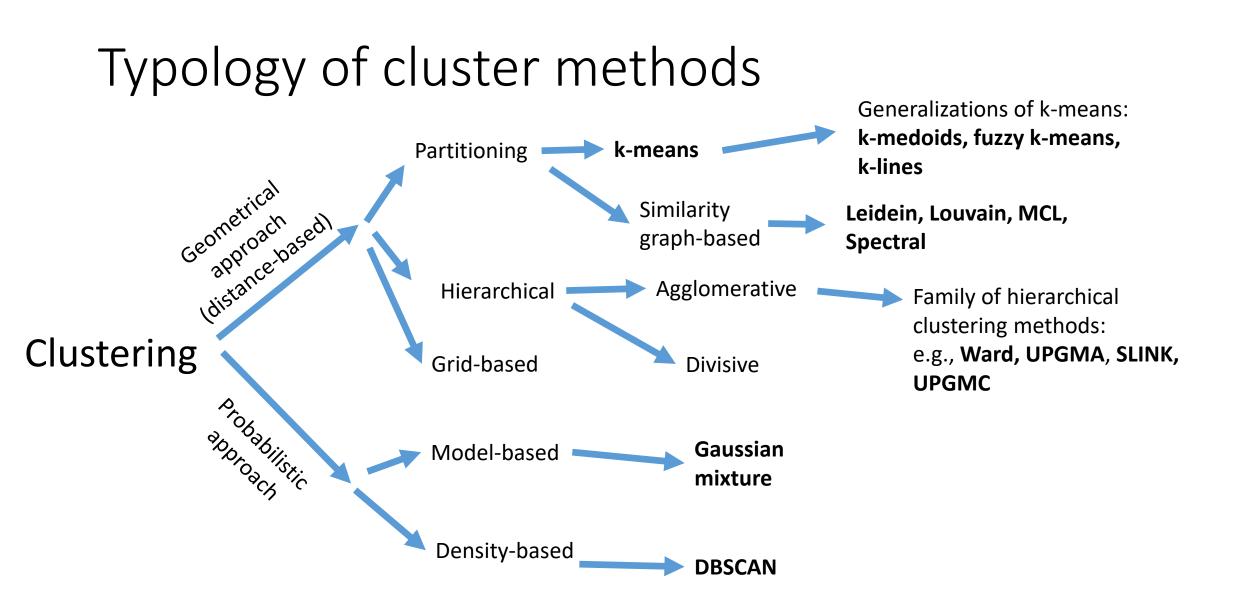


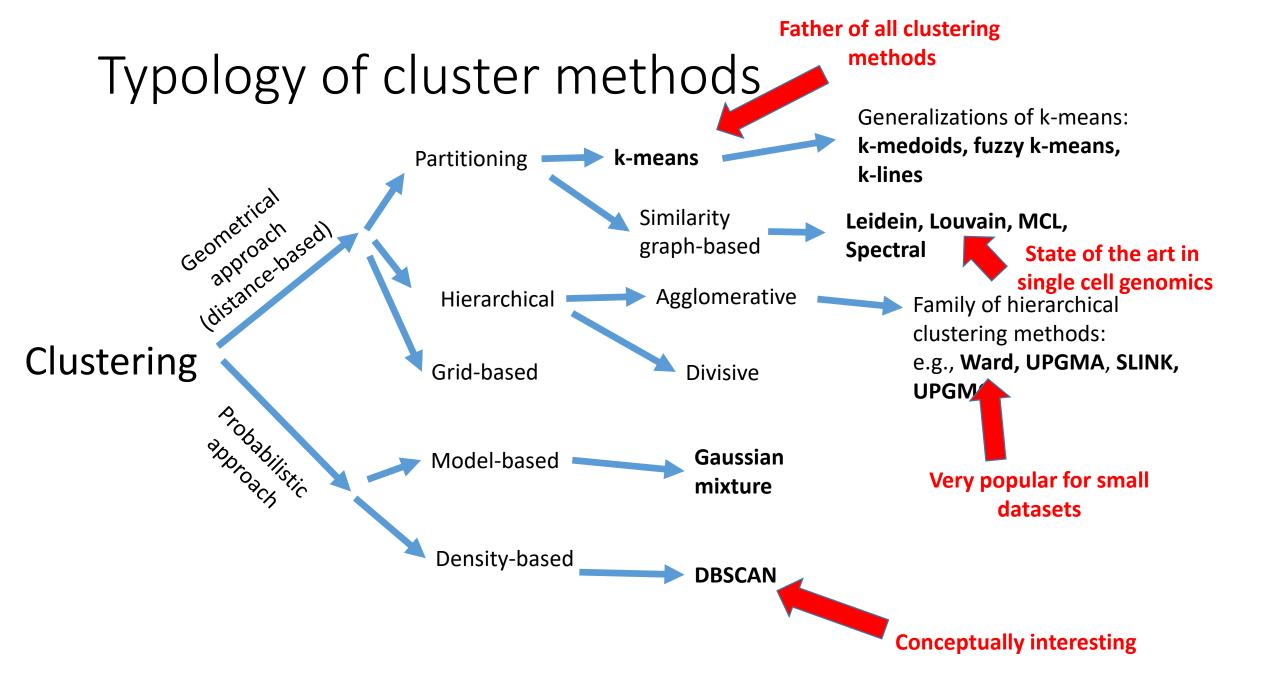
https://amp.pharm.mssm.edu/archs4/data.html

ANY clustering method requires specifying the number of clusters as a parameter

• Sometimes it is done explicitly

 Sometimes it is done through some kind of 'scale' or 'resolution' parameter



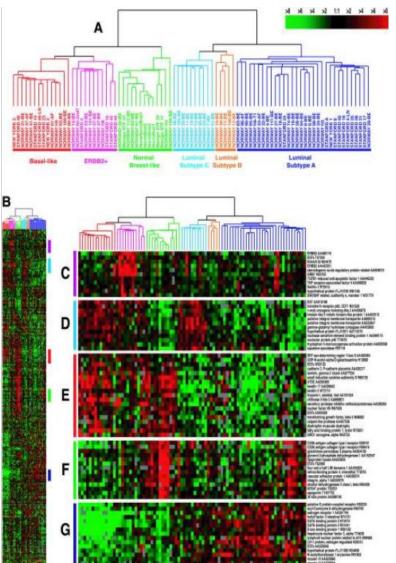


<u>Unsupervised learning:</u> Some clustering examples

### Hierarchical clustering for studying cancer

Dendrogram

Heatmap



Clusters and visualizes the data!

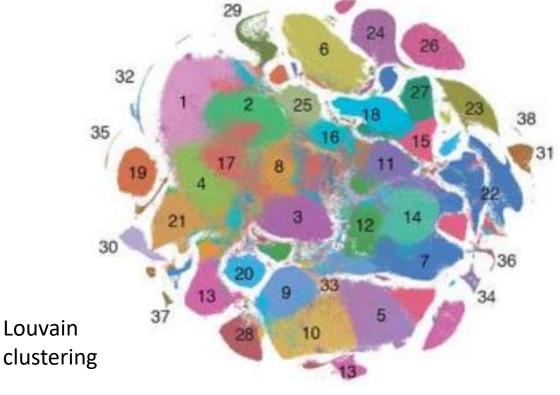
Sorlie, PNAS 2001

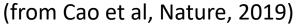
Graph-based clustering became new killer application in life sciences

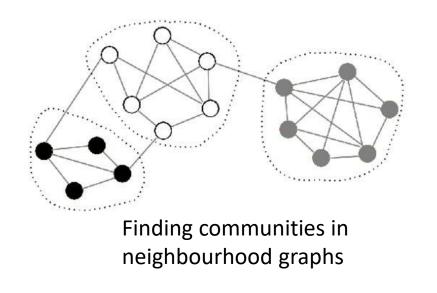




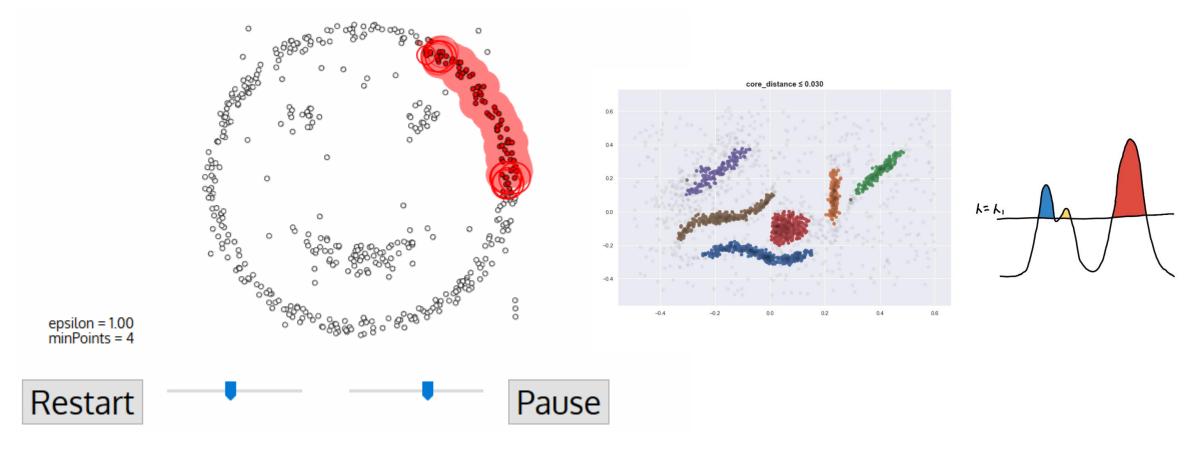
2 million data points – individual cells from mouse embryo





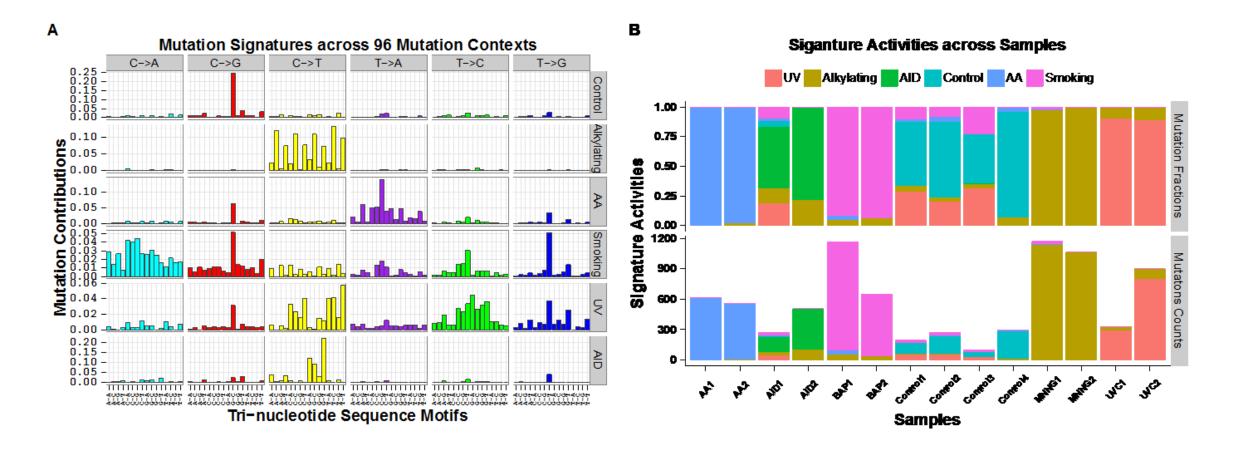


# Density-based clustering: cluster as an area of density concentration



DBSCAN

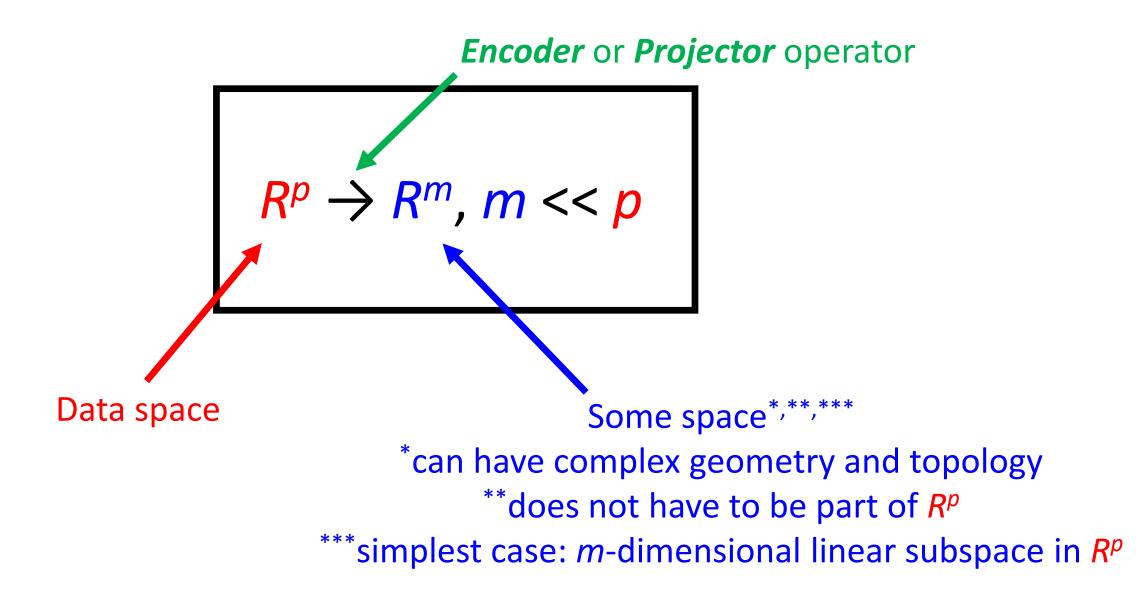
# Non-negative matrix factorization (NMF): cluster as a factor, having activity



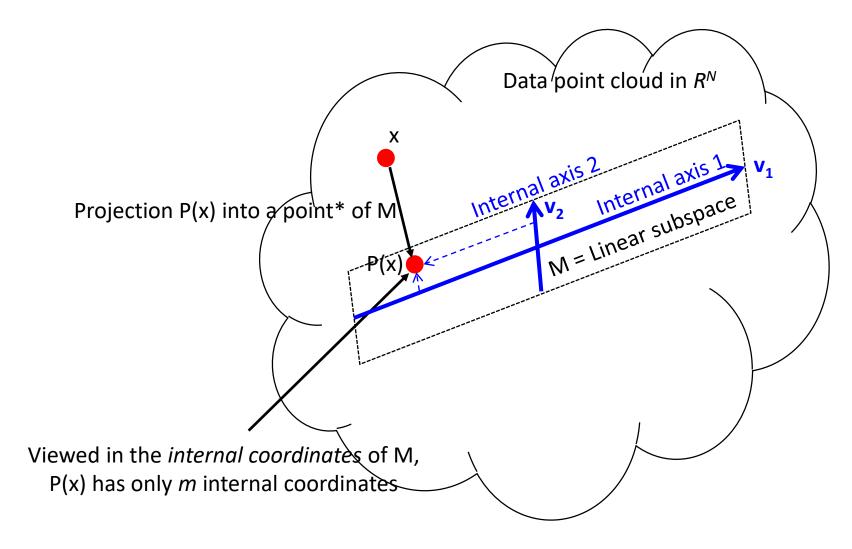
https://software.broadinstitute.org/cancer/cga/msp

### <u>Unsupervised learning:</u> What is dimensionality reduction?

### Dimensionality reduction formula



### Simplest geometrical image



\*for example, into the closest point, P(x) = arg min || y - x ||

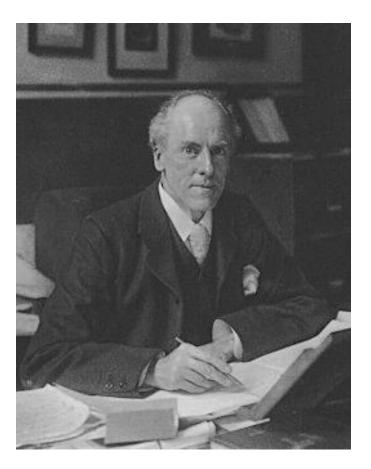
#### Why do we need to reduce dimension?

- Converting wide data to the classical case N>>p
- Improving signal/noise ratio for many other supervised or unsupervised methods
- Fighting with the curse of dimensionality
- Computational and memory tractability of data mining methods
- Visualizing the data
- Feature construction

<u>Unsupervised learning:</u> What is Principal Component Analysis (PCA)?

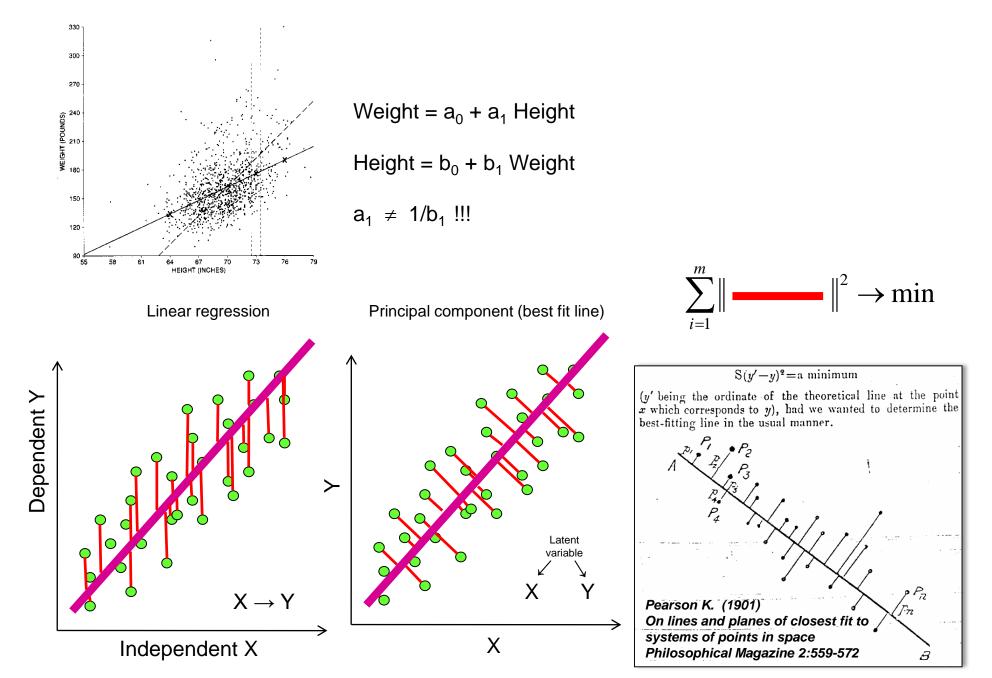
#### Principal Component Analysis (PCA):

(really) central method for unsupervised machine learning which is 120 years old!



Karl Pearson, 1857 – 1936

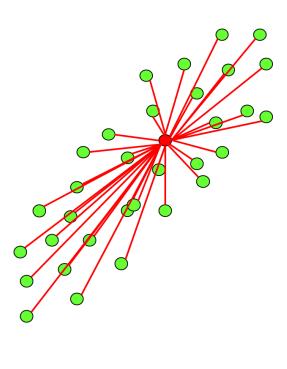
Pearson (1901): problem of choice of dependent and independent variables



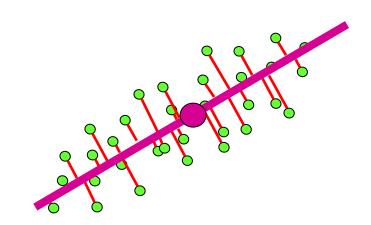
#### Principal line and principal plane

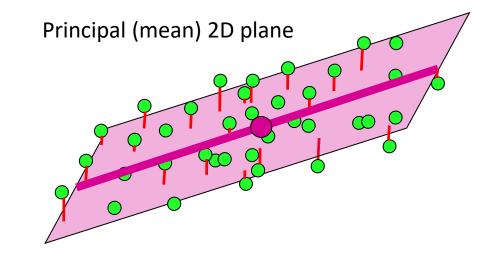
Mean point

Principal (mean) line

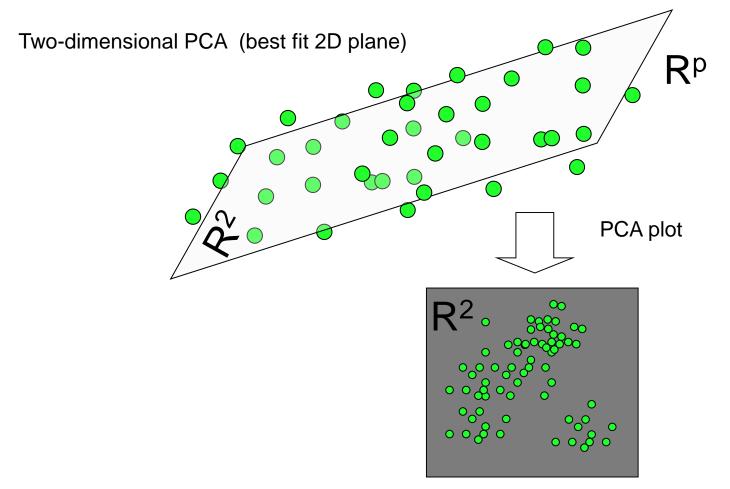




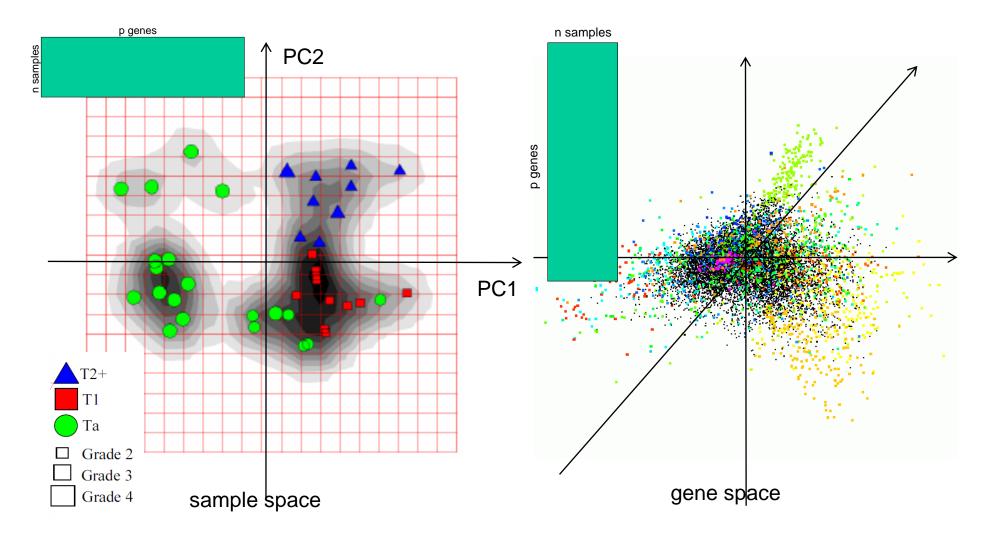




### PCA as data visualization method, based on dimension reduction



#### PCA plots of transcriptomic datasets

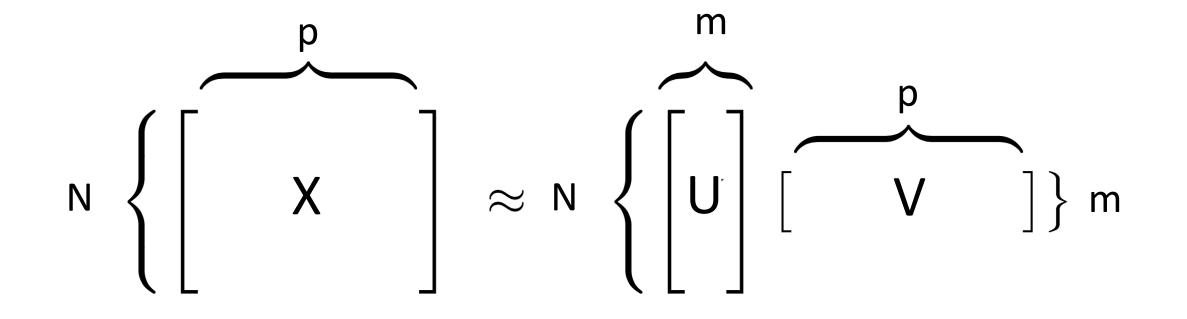


Classification, diagnosis, prognosis

Identification of molecular mechanisms, Interpretation

#### <u>Unsupervised learning:</u> What is matrix factorization?

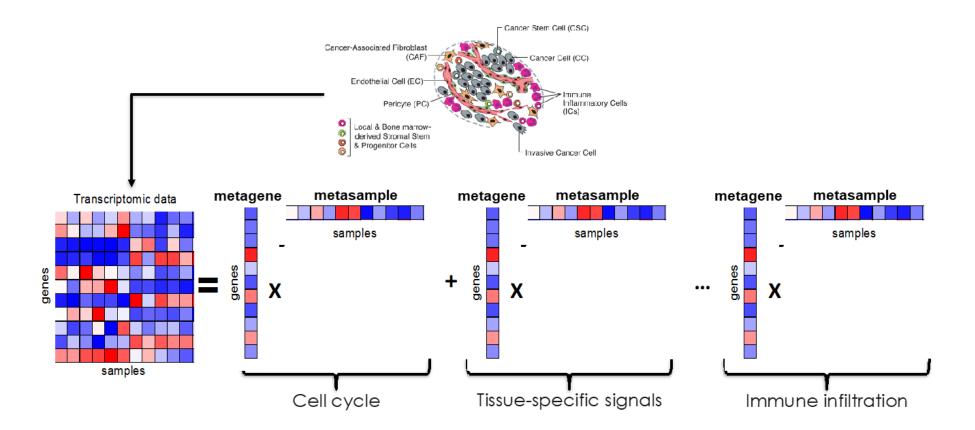
#### Low rank matrix factorization *X* = *UV*



Each column in U and row in V (together) are called a *component* Elements of U can be used for further analysis as a new data matrix Elements of V can be used for *explaining components* 

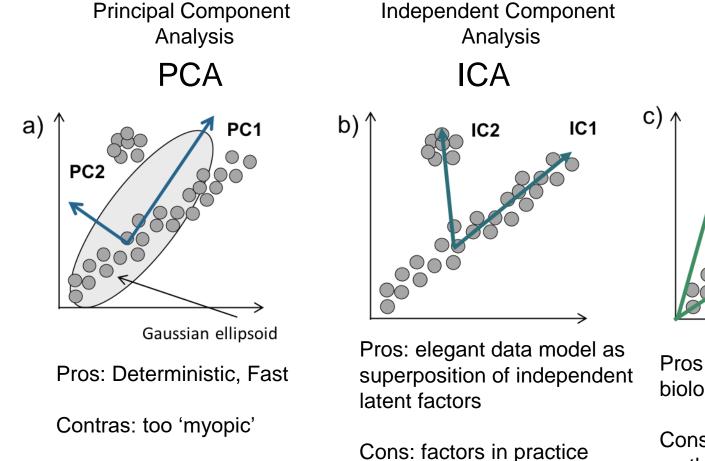
#### Low rank matrix factorization *X* = *UV*

Moving from thousands of genes to few biological factors through MF



Brunet JP. et al., PNAS (2004). Stein-O'Brien, G.L. et al. Trends in Genetics (2018).

#### Three most popular matrix factorization methods



have always negative part

Pros: non-negativity matches biological reality

Non-negative Matrix Factorization

NF1

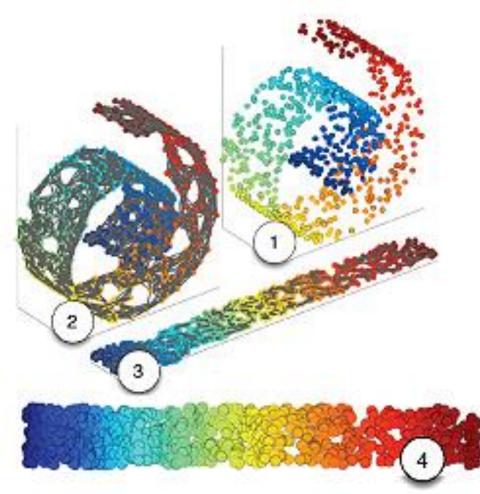
NMF

NF2

Cons: not a consistent method, correlation to average

<u>Unsupervised learning:</u> Non-linear dimensionality reduction methods (aka manifold learning)

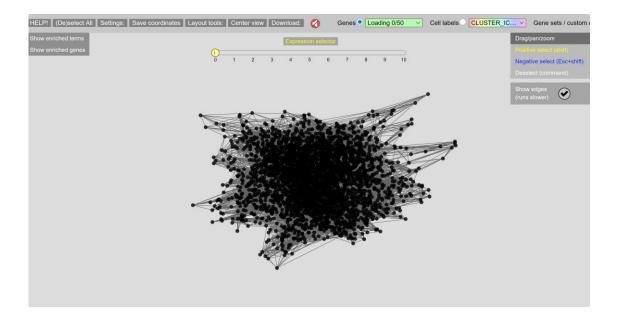
#### Manifold learning



Typical steps in learning and working with data manifold

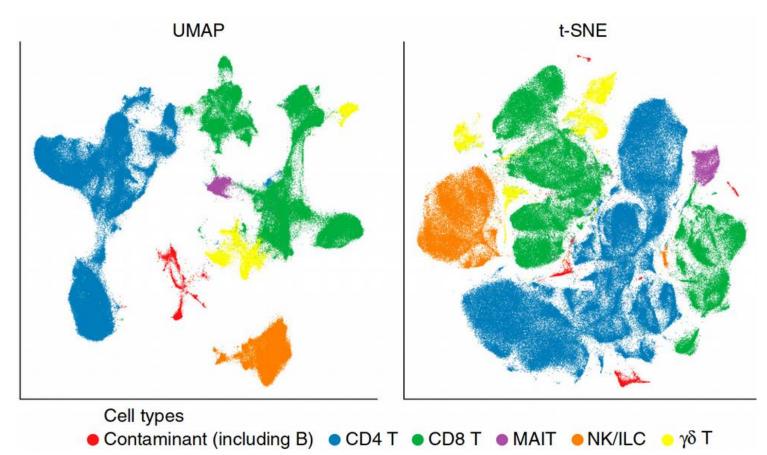
 Data point cloud
Neigbourhood graph
Unfolding (layouting) the graph in 2D
Presenting the data points projections

## Example of applying graph layouting to reduce data dimensionality (here, simple kNN graph)



https://www.ihes.fr/~zinovyev/mosaic/SPRING/springViewer.ht ml?datasets/CHLA9\_nufp

# T-SNE and UMAP: two killer applications in single cell field



Both are good in representing local relations

Differ in the exact way to construct the neighbourhood graph: e.g., UMAP tries to compensate for the effects of high-dimensional data

https://towardsdatascience.com/reduce-dimensions-for-single-cell-4224778a2d67

### Comparing tSNE and UMAP

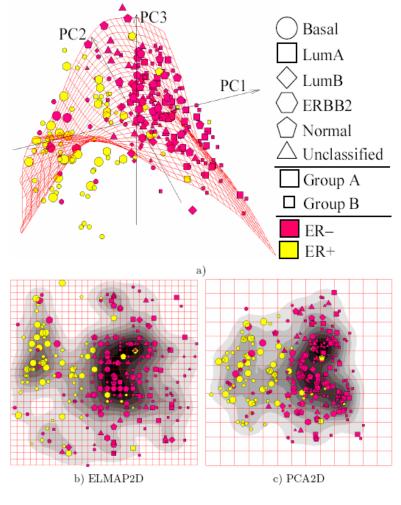
- UMAP better represents the global structure of the dataset
- UMAP is way faster than t-SNE
- UMAP is more stable to subsampling than t-SNE
- UMAP can work directly in very
- high ambient dimensionalities (>10<sup>6</sup>)

#### Comments to both t-SNE and UMAP methods

- Parameters really matter
- Cluster sizes in a UMAP plot mean nothing
- Distances between clusters might not mean anything
- Random noise doesn't always look random
- You may need more than one plot
- For large 'neighbourhood' parameters, both methods give results similar to Multi-dimensional scaling or PCA
- Both can work with non-Euclidean metrics in  $R^p$

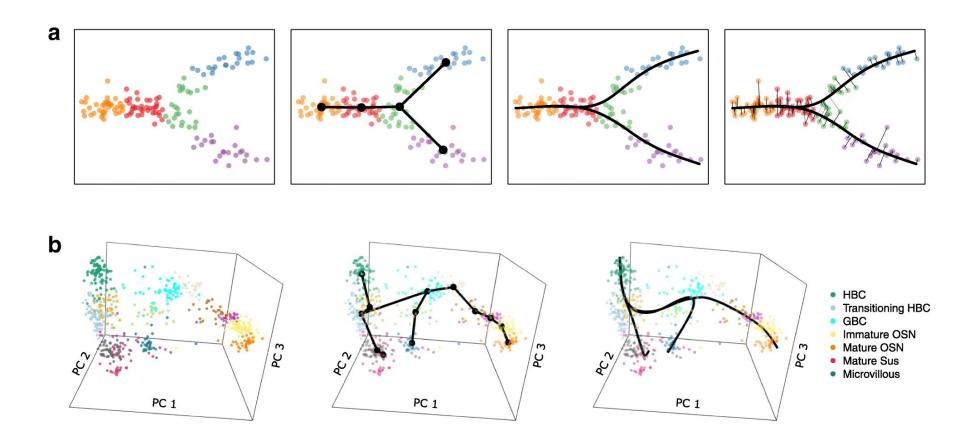
#### Methods not based on neighbourhood graphs

- Principal manifolds (e.g., elastic maps)
- Self-organizing maps (SOMs)
- Neural network-based autoencoders and variational autoencoders (VAEs)

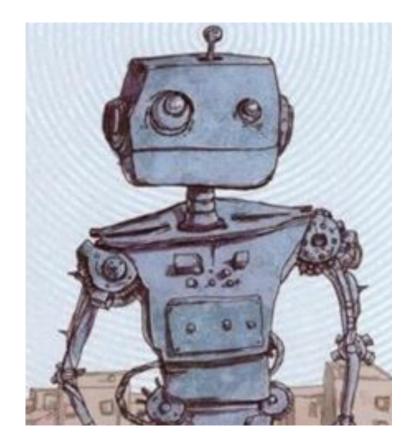


https://en.wikipedia.org/wiki/Elastic\_map

Trajectory inference as a special type of manifold learning/clustering



https://en.wikipedia.org/wiki/Trajectory\_inference



### Good bye!